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iMPROVE: information-centric

Multi-Parameter Routing Optimization Via

Evaluation

Abstract—Secure and reliable communication is needed
to support critical applications that have stringent re-
quirements, such as low-latency and high-bandwidth data
transmission. In this paper, we propose iMPROVE, a
novel architecture for reliable and resilient communication.
In iMPROVE each node autonomously evaluates its own
performance metrics and scores available links, enabling
packets to be forwarded over the highest-scoring paths
according to their priority. This decentralized approach
supports rapid, adaptive local decision-making. To assess
iMPROVE performance, we evaluated the performance of
the system against the state-of-the-art. Our results show
that iMPROVE significantly enhances the resiliency of high-
priority traffic compared to state-of-the-art, substantially
reducing packet loss in congested network environments
and thereby improving overall network performance.

Index Terms—Flow Control, link failure, link scoring,
QoS, traffic prioritization.

I. INTRODUCTION

RESILIENCY is key when striving to achieve a

reliable network architecture to support critical

applications. Current deployed network architectures use

an IP-based network architecture, where source and

destination IP addresses are used for packet delivery.

However, the IP-based architecture cannot fully and

adequately address the unique requirements of providing

QoS to critical applications. A novel communication

architecture called Named Data Networking (NDN) has

emerged as one of the most common realizations of

the Information-Centric Networking (ICN) paradigm [1].

The fundamental idea of NDN is to replace the existing

host-centric communication model with a data-centric

paradigm, in which unique names are used to retrieve

data rather than the IP address of the server storing it.

To reduce communication latency and overhead as

well as enhance availability, NDN uses pervasive data

caching, which enables any network entity to satisfy

data requests. NDN’s unique features allow flexible

and resilient data forwarding, in-network computation,

and built-in data integrity and authenticity. NDN-based

solutions to provide improved scalability, QoS, low la-

tency, and improved reliability have been proposed [2].

However, these solutions do not have systems in place

to maintain QoS for high-priority traffic in a congested

network.

To address these shortcomings, we propose iMPROVE,

a communication architecture with systems in place to

maintain QoS for high-priority traffic within a congested

network. It is capable of assessing the impact of vari-

ous networking conditions on critical applications. The

communication architecture of iMPROVE is built on

top of iCAAP [3], which is an NDN-based communi-

cation architecture. In particular, we extended iCAAP

by devising a smart forwarding strategy (inspired by

DICE [4]) to achieve traffic prioritization and QoS-aware

forwarding in addressing the stringent requirements of

different traffic flows.

Contribution: Our novel contributions can be summa-

rized as follows: (i) We outline the communication archi-

tecture of iMPROVE, a novel NDN-based communica-

tion architecture that utilizes a smart forwarding strategy

to promote traffic prioritization and QoS-aware packet

forwarding. (ii) A systematic sensitivity analysis over

a comprehensive discrete set of weight combinations,

enabling the identification of the most influential network

parameters for minimizing loss and latency. (iii) An

evaluation of iMPROVE’s network architecture against

state-of-the-art.

II. RELATED WORK

A. Smart forwarding

Kamboj et al. [5] proposed a QoS-aware multipath

routing scheme for SDN networks consisting of three

phases: splitting incoming flows, using a cost-optimized

heuristic to route subflows, and reordering packets at the

destination. This method meets high-bandwidth and low-

latency requirements by balancing load across disjoint

paths while ensuring service guarantees.

Panwar et al. in [4] introduced Dynamic Multi-RAT

Selection in the ICN-enabled Wireless Edge (DICE),

a dynamic forwarding strategy for Information-Centric

Networking (ICN). This strategy allows mobile devices

to select the best subset of Radio Access Technologies

(RATs) based on real-time network conditions such as

link quality and congestion. DICE dynamically selects

the minimum set of interfaces required to transfer pack-

ets concurrently. It optimizes network resource utiliza-

tion by reducing the number of interfaces needed for data
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delivery. DICE lacks key performance metrics such as

bandwidth, jitter, and packet count, which are crucial for

critical applications. Incorporating these metrics would

enhance DICE’s ability to optimize network performance

and improve throughput and latency stability for high-

throughput, latency-sensitive applications.

In their work on the MOCell algorithm [6], Gonzalez-

Trejo et al. introduced a multi-objective optimization

approach that considers various Quality of Service (QoS)

metrics such as bandwidth, delay, packet loss, and hop

count to identify the best path for data transmission.

The algorithm uses weights to balance these metrics

and employs evolutionary techniques to refine poten-

tial paths, ultimately selecting the path that maximizes

overall network performance. However, this approach

has limitations in networks where nodes handle packets

with different priorities. Furthermore, the authors do not

address the impact of recently transmitted packets on a

link or the queue fill ratio, which can significantly affect

performance in high-traffic conditions.

B. Background traffic and link failure

Kothandaraman et al. [7] propose a decentralized dy-

namic alternate-routing algorithm for IoT networks that

uses stochastic node-meeting models to anticipate and

reroute around link failures. Their evaluation shows that

this approach significantly improves end-to-end delivery

reliability, reduces control overhead, and saves node

energy compared to traditional routing methods.

III. SMART FORWARDING COMMUNICATION

ARCHITECTURE

A. NDN Overview

NDN is a pull-based communication architecture that

enables a consumer to request data by name from a

provider in a secure and resource-efficient manner. In

NDN, each piece of data, i.e., , data chunk, is assigned

a unique name, which follows a hierarchical human-

readable convention similar to URL addresses. This

enables the consumers to request the data chunks by

name and the communication network entities to cache

data chunks. In NDN, the network entities forward the

consumer’s request to the data provider, which in turn,

returns the requested chunk of data to the consumer

using the reverse path. As the data chunks travel back

to the consumer, the network entities decide whether to

cache the data chunk or not based on factors such as

data popularity. NDN’s built-in security mandates that

data providers sign their data upon creation to promote

source authenticity and data integrity.

In NDN, each network entity is equipped with a

Pending Interest Table (PIT), Forwarding Information

Base (FIB), and a Content Store (CS) [8]. The content

Fig. 1: iMPROVE Communication Architecture.

store acts as a temporary cache to store popular data.

Similar to the existing routing table, FIB helps forward

the request to the provider. NDN’s stateful forwarding

plane uses PIT to keep track of in-flight requests and

further enable request aggregation. NDN also features a

strategy layer, which enables flexible and fine-grain for-

warding decision-making, such as least-cost path, multi-

cast, broadcast, or a customized forwarding strategy for

meeting the unique requirements of a given application.

B. iCAAP Architecture

In designing iMPROVE, we adopt iCAAP [3], our pre-

vious NDN-based architecture for QoS-aware communi-

cation, and extend it with a smart forwarding strategy

inspired by [4]. As shown in Fig. 1, iCAAP has two

major components: traffic prioritization and QoS-aware

traffic management via token bucket. In what follows,

we explain these components in more detail.

1) Traffic Prioritization: Considering the various

types of applications and their requirements, with iM-

PROVE, we classify the network traffic into three dif-

ferent priority classes to promote QoS-aware traffic

management. The three classes include Type I as high

priority, Type II as medium priority, and Type III as low

priority. To encode these priority classes into network

traffic, each packet includes its priority class in the

“type” component of the requested data name. To meet

the QoS requirements of various traffic classes, we

devised three distinct priority queues for each interface

of every given node–one per priority class–which facil-

itates traffic prioritization by assigning similar priority

traffic to the same queue. Upon arrival at a node, a

packet will be pushed into the appropriate queues and

then dequeued when resources are available for packet

transmission. The order of dequeuing packets from all

queues is determined by the Weighted Fair Queuing

(WFQ) algorithm.

2) Token Bucket: To shape network traffic and control

the communication rate of the traffic classes, we used

a token bucket algorithm, where each priority queue is

associated with a token bucket (i.e., , a limited number
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Algorithm 1: iMPROVE Forwarding Strategy

1 pr ← getSuccessProbabilityRequirement(p)
2 L = getInterfaces(p)

// Remove faces that do not meet the spr

3 FL = filterInterfaces(L, spr)
4 if (notEmpty(FL)) then

5 outFace = chooseBestInterface(FL)
6 forward(p, outFace)

7 else

8 i = 0; ps = 0
9 sortInterfacesBySuccessProbability(L)

10 while ps < pr and i < length(L) do

11 forward(p, L[i])
12 ps += getSuccessProbability(L[i])
13 i++

of tokens). Thus, a packet can be dequeued from the cor-

responding queue only if a sufficient number of tokens

are available for the given queue; one token will be used

to dequeue one packet. In the design of iMPROVE, the

token generation rate for each priority class is adjusted

based on the priority requirements. For our use case,

we ran a large number of Monte Carlo simulations to

identify the most pertinent token generation rate for each

priority class. We then set the token generation rates

accordingly in our isolated network simulations.

C. iMPROVE Architecture

In iCAAP [3], we used a customized QoS-aware for-

warding strategy to handle prioritization and a queuing

mechanism where Type I and Type II traffic classes used

multicast routing. In contrast, Type III used the best-

route (unicast) mechanism. In iMPROVE, we propose

a novel smart forwarding strategy for reliable packet

forwarding. To improve reliability, the proposed strategy

forwards packets over multiple interfaces in specific

situations. More specifically, our strategy uses a subset

of interfaces to meet the expected data delivery rates of

different traffic classes based on network performance

metrics, such as network congestion and statistical in-

formation of available interfaces. Note that this design

contrasts with iCAAP’s static approach, where the num-

ber of selected interfaces is always the same for a given

traffic class.

Algorithm 1 describes the iMPROVE forwarding strat-

egy. Upon receiving the packet (p), the network entity

node (e.g., router u) extracts the priority class (pClass) of

the packet from the type component of the packet name.

Each type has a unique success probability requirement

(spr), intuitively chosen as 100%, 80%, and 0% for

Types I, II, and III, respectively. Router u identifies the

priority class of p and sets p’s probability requirement

(pr) based on the class’s spr (Lines 1).

Each viable interface for the packet’s next hop is then

assembled into a list. This list of available interfaces

is filtered to remove any options that do not meet

the pr(Lines 2-3). If at least one interface is present

in the resulting list, then the remaining interfaces are

assigned a score (Is). This score is calculated based on

six metrics: max bandwidth, success probability, queue

fill rate, number of packets sent, jitter, and throughput.

The packet is then forwarded on the interface with the

highest resulting score (Lines 4-6).

If no interfaces meet the pr, then router u will sort the

interfaces based on the probability of success. Router u

will then go down the sorted list L and enqueue p on the

interfaces, adding their success probability to the total

probability score ps, until ps is greater than or equal to

the pr for p, or we reach the end of L (Lines 7-13).

Algorithm 2: Interface Metric Update Procedure

Input: Packet p with named prefix, interface

state, and packet history

Output: Updated metrics: Loss rate, jitter,

number of packets sent, throughput,

queue fill ratio

1 α← 0.83 ; // EWMA smoothing factor

2 T imeoutThreshold← 5 seconds;

3 if packet p is forwarded on an interface then

4 Store {prefix, timestamp, size} in packet

history;

5 Increment PacketsSent;

6 if packet with prefix is successfully satisfied then

7 Retrieve sentT imestamp, size from packet

history using prefix;

8 latency ← currentT ime−sentT imestamp;

9 Update throughput history with

{latency, size};
10 Update jitter based on latency variation;

11 LossRate← α× LossRate;

12 Remove entry from packet history;

13 else if packet times out

(currentT ime− sentT imestamp >

TimeoutThreshold) then

14 LossRate← α× LossRate+ (1− α);
15 Remove entry from packet history;

16 Update queue fill ratio based on current interface

queue length;

Each interface maintains a history of packets for every

prefix entry, which is updated based on packet events as

shown in Algorithm 2. When a packet is forwarded, the
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interface records the prefix, timestamp, and size in the

packet history and increments the total number of pack-

ets sent. If the packet is subsequently satisfied, the corre-

sponding timestamp and size are retrieved to compute the

packet’s latency and update the throughput history. Jitter

is calculated as the variation in packet latency, measured

as the absolute difference in latency between successive

packets. The loss rate is updated using an exponentially

weighted moving average (EWMA) [9] with a smoothing

factor α = 0.83. If a packet is satisfied, the loss rate is

updated as LossRate ← α × LossRate, and if a packet

times out (i.e., not delivered within 5 seconds), it is

updated as LossRate← α× LossRate + (1− α).
The raw values from the six metrics are typically

calculated based on the packet history. The exceptions

are the max bandwidth and queue fill rate, the first of

which is fixed and immutable, while the other varies

based on how full the queue is at the time of scoring.

The success probability is updated as packets are either

satisfied or timed out. In contrast, the packets sent is a

running history of the total number of packets sent on

an interface in recent history. At each scoring interval,

throughput and jitter are calculated using a five-second

rolling history. The total size in the running history is

totaled to calculate the throughput, while the jitter is

calculated using the latency variance recorded in said

history.

Score = (1− Loss Fraction)× w1 + Bandwidth × w2

+ (1− Queue Fill Ratio)× w3 − Packet Sent × w4

+ (1− Jitter)× w5 + Throughput × w6

(1)

All metrics are collected per interface at the time of

scoring and normalized to the range [0, 1]. The overall

score for each interface is then computed as a weighted

sum, as shown in Equation 1, where each weight is

constrained to lie between 0 and 1 and the sum of all

weights equals one. The process of determining suitable

weights requires thorough and systematic exploration,

which is detailed in the following sections.

IV. PERFORMANCE EVALUATION

In this section, we discuss our simulation setups and

our evaluation. We first conducted a sensitivity analysis

to find the optimal weight parameters for iMPROVE.

We then defined four simulation scenarios, which varied

with respect to background traffic or link failure. We

analyze the performance of each architecture in all

scenarios, which include baseline NDN, iCAAP, DICE,

and iMPROVE with two combinations of weights (Best

and Average combination of weights). We analyzed the

latency, loss rate, and overhead performance of each of

the architectures. We ran this on an experiment using

Fig. 2: 77-Node topology

ns-3 on a computer running Ubuntu 20.04 and Intel(R)

Xeon(R) W-2245 CPU @ 3.90GHz, 128 GB of RAM.

This experiment ran on a network composed of an

undirected graph G(V,E) with |V | = 77 and |E| = 135
as shown in Fig 2.

H ⊂ V, |H| = 7, R = V −H, |R| = 70.

The induced subgraph G[H] is the complete graph K7,

which forms a highly reliable central backbone. Regular

nodes in R are embedded in R
2 to simulate geographic

dispersion and approximately 0.8 |R| nodes connect

exclusively to their nearest hub, while the remaining

0.2 |R| nodes each connect to multiple hubs to ensure

redundancy.

A. Optimal Weights

To determine the optimal weight parameters, we con-

ducted a sensitivity analysis on a smaller network using

four different topologies, each consisting of 18 nodes.

These topologies were generated using the Barabasi-

Albert algorithm, the Erdos-Renyi algorithm, and two

variations based on the Watts-Strogatz model. In the first

Watts-Strogatz variation, nodes were connected to four

neighbors, while in the second, nodes were connected to

either 4, 6, or 8 neighbors.

To identify the optimal set of parameter weights,

we performed a sensitivity analysis for each topol-

ogy by systematically exploring all feasible combina-

Fig. 3: Parteo Frontier - Type I traffic.
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Fig. 4: Loss, Latency, and Packet Overhead in NBT and NLF scenario.
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Fig. 5: Loss, Latency, and Packet Overhead in NBT and LF scenario.
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Fig. 6: Loss, Latency, and Packet Overhead in BT and NLF scenario.
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Fig. 7: Loss, Latency, and Packet Overhead in BT and LF scenario.

tions of six weights, w1, w2, . . . , w6, each represent-

ing weight for one of the following network metrics:

maximum bandwidth, success probability, queue fill

rate, number of packets sent, jitter, and throughput.

Each weight was restricted to values in the discrete set

{0.05, 0.10, . . . , 1.00}, and all combinations satisfying

the constraint
∑6

i=1 wi = 1, as shown in Equation (2),

were considered. This exhaustive evaluation enabled a

comprehensive sensitivity analysis, providing insight into

how varying the relative importance of each parameter

affects overall network performance.

wi ∈ {0.05, 0.10, . . . , 1.00}, ∀i ∈ {1, . . . , 6},

6∑

i=1

wi = 1

(2)

Each scenario involved running a 100-second simu-

lation, during which we calculated the loss and latency

metrics for three different types of traffic. Average loss

and latency values were computed for each traffic type

across all four topologies for each weight combination.

This process provided us with average loss and latency

metrics for all three traffic types across every combina-

tion of weights. To evaluate these weight combinations,

we assigned a score to each set based on the following

weighted sum:

Score = 0.3 × lossType I + 0.3 × latencyType I

+ 0.24 × lossType II + 0.06 × latencyType II

+ 0.10 × lossType III + 0 × latencyType III.

(3)

As per Equation 3, loss and latency metrics
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were weighted most heavily for Traffic Type I,

with Traffic Type II receiving the next highest

weights. From the full set of candidate weight

vectors, the twenty highest-scoring combinations

were selected and their arithmetic mean computed,

yielding the average weight vector wAvg =
[0.1525, 0.1900, 0.1600, 0.2175, 0.1475, 0.1325]. Type I

traffic was designated as high-priority, and the average

loss and latency for Type I flows were calculated across

all four network scenarios for each candidate weight

combination. To illustrate the inherent trade-off between

loss and latency, a Pareto frontier was constructed

with normalized values of loss and latency as seen in

Fig. 3, where each point represents a non-dominated

weight vector for which neither loss nor latency can

be simultaneously reduced. The datapoint located at

the lower left corner of the Pareto frontier corresponds

to the weight vector that achieves the lowest values

for both loss and latency. Accordingly, the globally

optimal weight vector for Type I traffic was identified

as wBest = [0.25, 0.10, 0.05, 0.45, 0.10, 0.05].

B. iMPROVE Performance Evaluation

We conducted simulations on a 77-node network

(Fig. 2) over a 151-second interval. The study con-

sidered four scenarios: No Background Traffic and No

Link Failure (NBT-NLF), No Background Traffic with

Link Failure (NBT-LF), Background Traffic with No

Link Failure (BT-NLF), and Background Traffic with

Link Failure (BT-LF). Background traffic corresponds

to elevated Type III traffic, where 44 nodes generate

approximately 2500 Type III packets per second. Link

failures were randomly induced by disabling 26 out of

135 edges during the intervals 25–50s, 75–100s, and

125–150s. Average loss, latency, and packet overhead

were calculated over ten independent runs for each

scenario.

Fig. 4 presents the results for the NBT-NLF sce-

nario. The iCAAP approach performs poorly, even in

the absence of background traffic and link failures,

primarily due to token bucket overloading. The other

three methods exhibit comparable performance under

these conditions. Notably, iCAAP incurs an overhead

approximately 15 times greater than the baseline method,

while iMPROVE exhibits roughly twice the overhead.

Fig. 5 illustrates the results for the NBT-LF scenario.

iMPROVE achieves significantly lower packet loss than

the other strategies. Although latency increases slightly,

this can be attributed to the utilization of additional

routes and longer paths. It is also observed that iM-

PROVE incurs higher overhead in NBT-LF compared

to NBT-NLF due to increased loss rates necessitating

additional packet transmissions for successful delivery.

The performance of DICE remains similar to that of the

baseline approach across both scenarios.

Fig. 6 shows the results for the BT-NLF scenario.

iMPROVE demonstrates substantial improvements over

the other approaches and achieves the lowest latency by

effectively distributing background traffic and prevent-

ing link congestion. In this scenario, iMPROVE incurs

slightly higher overhead than iCAAP, primarily due to

increased packet disruption from background traffic. To

ensure successful delivery, iMPROVE transmits packets

across multiple paths, which results in more packets

being counted in the overhead metric. In contrast, iCAAP

reports lower overhead largely because approximately

∼20% of its traffic is lost and not included in the

measurement. Fig. 7 presents the results for the BT-

LF scenario. Consistent with previous cases, iMPROVE

demonstrates a marked improvement over the other

methods. This can be attributed to its ability to adapt

rapidly to link failures, in contrast to the other strategies.

While loss rates are elevated in this scenario due to re-

maining links being heavily congested with background

traffic, iMPROVE experiences only a slight increase in

loss compared to NBT-LF. The latency for iMPROVE

remains favorable, and follows the same trend observed

in BT-NLF. Overhead in this scenario is comparable to

that of BT-NLF, while iMPROVE exhibits slightly lower

overhead than iCAAP.

V. CONCLUSION

The proposed iMPROVE architecture introduces a

network-aware forwarding strategy that makes routing

decisions based on current network conditions. By lever-

aging NDN for traffic prioritization and employing a

token bucket mechanism for flow regulation, iMPROVE

achieved lower loss rates, latency, and packet overhead

than traditional approaches. The method maintained

strong performance even with heavy background traffic

and during link failures, ensuring reliable service for

high-priority packets while making efficient use of net-

work resources. For future work, we aim to investigate

adaptive parameter tuning so that iMPROVE can better

respond to changing traffic patterns. We also plan to

integrate iMPROVE with additional congestion control

techniques to further improve efficiency under high net-

work loads.
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