1IMPROVE: information-centric
Multi-Parameter Routing Optimization Via
Evaluation

Abstract—Secure and reliable communication is needed
to support critical applications that have stringent re-
quirements, such as low-latency and high-bandwidth data
transmission. In this paper, we propose iMPROVE, a
novel architecture for reliable and resilient communication.
In iMPROVE each node autonomously evaluates its own
performance metrics and scores available links, enabling
packets to be forwarded over the highest-scoring paths
according to their priority. This decentralized approach
supports rapid, adaptive local decision-making. To assess
iMPROVE performance, we evaluated the performance of
the system against the state-of-the-art. Our results show
that iMPROVE significantly enhances the resiliency of high-
priority traffic compared to state-of-the-art, substantially
reducing packet loss in congested network environments
and thereby improving overall network performance.

Index Terms—Flow Control, link failure, link scoring,
QoS, traffic prioritization.

I. INTRODUCTION

ESILIENCY is key when striving to achieve a
reliable network architecture to support critical
applications. Current deployed network architectures use
an IP-based network architecture, where source and
destination IP addresses are used for packet delivery.
However, the IP-based architecture cannot fully and
adequately address the unique requirements of providing
QoS to critical applications. A novel communication
architecture called Named Data Networking (NDN) has
emerged as one of the most common realizations of
the Information-Centric Networking (ICN) paradigm [1].
The fundamental idea of NDN is to replace the existing
host-centric communication model with a data-centric
paradigm, in which unique names are used to retrieve
data rather than the IP address of the server storing it.
To reduce communication latency and overhead as
well as enhance availability, NDN uses pervasive data
caching, which enables any network entity to satisfy
data requests. NDN’s unique features allow flexible
and resilient data forwarding, in-network computation,
and built-in data integrity and authenticity. NDN-based
solutions to provide improved scalability, QoS, low la-
tency, and improved reliability have been proposed [2].
However, these solutions do not have systems in place
to maintain QoS for high-priority traffic in a congested
network.

To address these shortcomings, we propose iMPROVE,
a communication architecture with systems in place to
maintain QoS for high-priority traffic within a congested
network. It is capable of assessing the impact of vari-
ous networking conditions on critical applications. The
communication architecture of iMPROVE is built on
top of iCAAP [3], which is an NDN-based communi-
cation architecture. In particular, we extended iCAAP
by devising a smart forwarding strategy (inspired by
DICE [4]) to achieve traffic prioritization and QoS-aware
forwarding in addressing the stringent requirements of
different traffic flows.

Contribution: Our novel contributions can be summa-
rized as follows: (i) We outline the communication archi-
tecture of iMPROVE, a novel NDN-based communica-
tion architecture that utilizes a smart forwarding strategy
to promote traffic prioritization and QoS-aware packet
forwarding. (i) A systematic sensitivity analysis over
a comprehensive discrete set of weight combinations,
enabling the identification of the most influential network
parameters for minimizing loss and latency. (iii) An
evaluation of iMPROVE’s network architecture against
state-of-the-art.

II. RELATED WORK
A. Smart forwarding

Kamboj et al. [5] proposed a QoS-aware multipath
routing scheme for SDN networks consisting of three
phases: splitting incoming flows, using a cost-optimized
heuristic to route subflows, and reordering packets at the
destination. This method meets high-bandwidth and low-
latency requirements by balancing load across disjoint
paths while ensuring service guarantees.

Panwar et al. in [4] introduced Dynamic Multi-RAT
Selection in the ICN-enabled Wireless Edge (DICE),
a dynamic forwarding strategy for Information-Centric
Networking (ICN). This strategy allows mobile devices
to select the best subset of Radio Access Technologies
(RATSs) based on real-time network conditions such as
link quality and congestion. DICE dynamically selects
the minimum set of interfaces required to transfer pack-
ets concurrently. It optimizes network resource utiliza-
tion by reducing the number of interfaces needed for data



delivery. DICE lacks key performance metrics such as
bandwidth, jitter, and packet count, which are crucial for
critical applications. Incorporating these metrics would
enhance DICE’s ability to optimize network performance
and improve throughput and latency stability for high-
throughput, latency-sensitive applications.

In their work on the MOCell algorithm [6], Gonzalez-
Trejo et al. introduced a multi-objective optimization
approach that considers various Quality of Service (QoS)
metrics such as bandwidth, delay, packet loss, and hop
count to identify the best path for data transmission.
The algorithm uses weights to balance these metrics
and employs evolutionary techniques to refine poten-
tial paths, ultimately selecting the path that maximizes
overall network performance. However, this approach
has limitations in networks where nodes handle packets
with different priorities. Furthermore, the authors do not
address the impact of recently transmitted packets on a
link or the queue fill ratio, which can significantly affect
performance in high-traffic conditions.

B. Background traffic and link failure

Kothandaraman et al. [7] propose a decentralized dy-
namic alternate-routing algorithm for IoT networks that
uses stochastic node-meeting models to anticipate and
reroute around link failures. Their evaluation shows that
this approach significantly improves end-to-end delivery
reliability, reduces control overhead, and saves node
energy compared to traditional routing methods.

III. SMART FORWARDING COMMUNICATION
ARCHITECTURE

A. NDN Overview

NDN is a pull-based communication architecture that
enables a consumer to request data by name from a
provider in a secure and resource-efficient manner. In
NDN, each piece of data, i.e., , data chunk, is assigned
a unique name, which follows a hierarchical human-
readable convention similar to URL addresses. This
enables the consumers to request the data chunks by
name and the communication network entities to cache
data chunks. In NDN, the network entities forward the
consumer’s request to the data provider, which in turn,
returns the requested chunk of data to the consumer
using the reverse path. As the data chunks travel back
to the consumer, the network entities decide whether to
cache the data chunk or not based on factors such as
data popularity. NDN’s built-in security mandates that
data providers sign their data upon creation to promote
source authenticity and data integrity.

In NDN, each network entity is equipped with a
Pending Interest Table (PIT), Forwarding Information
Base (FIB), and a Content Store (CS) [8]. The content
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Fig. 1: iMPROVE Communication Architecture.

store acts as a temporary cache to store popular data.
Similar to the existing routing table, FIB helps forward
the request to the provider. NDN’s stateful forwarding
plane uses PIT to keep track of in-flight requests and
further enable request aggregation. NDN also features a
strategy layer, which enables flexible and fine-grain for-
warding decision-making, such as least-cost path, multi-
cast, broadcast, or a customized forwarding strategy for
meeting the unique requirements of a given application.

B. iCAAP Architecture

In designing iMPROVE, we adopt iCAAP [3], our pre-
vious NDN-based architecture for QoS-aware communi-
cation, and extend it with a smart forwarding strategy
inspired by [4]. As shown in Fig. 1, iCAAP has two
major components: traffic prioritization and QoS-aware
traffic management via token bucket. In what follows,
we explain these components in more detail.

1) Traffic Prioritization: Considering the various
types of applications and their requirements, with iM-
PROVE, we classify the network traffic into three dif-
ferent priority classes to promote QoS-aware traffic
management. The three classes include Type I as high
priority, Type Il as medium priority, and Type III as low
priority. To encode these priority classes into network
traffic, each packet includes its priority class in the
“type” component of the requested data name. To meet
the QoS requirements of various traffic classes, we
devised three distinct priority queues for each interface
of every given node—one per priority class—which facil-
itates traffic prioritization by assigning similar priority
traffic to the same queue. Upon arrival at a node, a
packet will be pushed into the appropriate queues and
then dequeued when resources are available for packet
transmission. The order of dequeuing packets from all
queues is determined by the Weighted Fair Queuing
(WFQ) algorithm.

2) Token Bucket: To shape network traffic and control
the communication rate of the traffic classes, we used
a token bucket algorithm, where each priority queue is
associated with a token bucket (i.e., , a limited number



Algorithm 1: iMPROVE Forwarding Strategy

1 pr « getSuccessProbabilityRequirement(p)
2 L = getlnterfaces(p)
// Remove faces that do not meet the spr
3 FL = filterInterfaces(L, spr)
4 if (notEmpty(FL)) then

5 outFace = chooseBestInterface(F L)

6 forward(p, outFace)

7 else

8 1=0;ps =0

9 sortInterfacesBySuccessProbability (L)
10 while ps < pr and i < length(£) do
1 forward(p, L][i])

12 ps += getSuccessProbability(L][i])
13 i++

of tokens). Thus, a packet can be dequeued from the cor-
responding queue only if a sufficient number of tokens
are available for the given queue; one token will be used
to dequeue one packet. In the design of iMPROVE, the
token generation rate for each priority class is adjusted
based on the priority requirements. For our use case,
we ran a large number of Monte Carlo simulations to
identify the most pertinent token generation rate for each
priority class. We then set the token generation rates
accordingly in our isolated network simulations.

C. iMPROVE Architecture

In iCAAP [3], we used a customized QoS-aware for-
warding strategy to handle prioritization and a queuing
mechanism where Type I and Type II traffic classes used
multicast routing. In contrast, Type III used the best-
route (unicast) mechanism. In iMPROVE, we propose
a novel smart forwarding strategy for reliable packet
forwarding. To improve reliability, the proposed strategy
forwards packets over multiple interfaces in specific
situations. More specifically, our strategy uses a subset
of interfaces to meet the expected data delivery rates of
different traffic classes based on network performance
metrics, such as network congestion and statistical in-
formation of available interfaces. Note that this design
contrasts with iCAAP’s static approach, where the num-
ber of selected interfaces is always the same for a given
traffic class.

Algorithm 1 describes the iMPROVE forwarding strat-
egy. Upon receiving the packet (p), the network entity
node (e.g., router u) extracts the priority class (pClass) of
the packet from the type component of the packet name.
Each type has a unique success probability requirement
(spr), intuitively chosen as 100%, 80%, and 0% for

Types 1, 11, and III, respectively. Router u identifies the
priority class of p and sets p’s probability requirement
(pr) based on the class’s spr (Lines 1).

Each viable interface for the packet’s next hop is then
assembled into a list. This list of available interfaces
is filtered to remove any options that do not meet
the pr(Lines 2-3). If at least one interface is present
in the resulting list, then the remaining interfaces are
assigned a score (ls). This score is calculated based on
six metrics: max bandwidth, success probability, queue
fill rate, number of packets sent, jitter, and throughput.
The packet is then forwarded on the interface with the
highest resulting score (Lines 4-6).

If no interfaces meet the pr, then router u will sort the
interfaces based on the probability of success. Router u
will then go down the sorted list £ and enqueue p on the
interfaces, adding their success probability to the total
probability score ps, until ps is greater than or equal to
the pr for p, or we reach the end of £ (Lines 7-13).

Algorithm 2: Interface Metric Update Procedure

Input: Packet p with named prefix, interface
state, and packet history
Output: Updated metrics: Loss rate, jitter,
number of packets sent, throughput,
queue fill ratio
1a<+083; // EWMA smoothing factor
2 TimeoutThreshold < 5 seconds;
3 if packet p is forwarded on an interface then

4 Store {prefix, timestamp, size} in packet
history;
5 Increment PacketsSent;

6 if packet with prefix is successfully satisfied then

7 Retrieve sentTimestamp, size from packet
history using prefix;
8 latency < currentTime— sentTimestamp;

9 Update throughput history with
{latency, size};

10 Update jitter based on latency variation;
11 LossRate < a x LossRate;

12 Remove entry from packet history;

13 else if packet times out
(currentTime — sentTimestamp >
TimeoutT hreshold) then
14 LossRate < a x LossRate + (1 — a);
15 L Remove entry from packet history;

16 Update queue fill ratio based on current interface
queue length;

Each interface maintains a history of packets for every
prefix entry, which is updated based on packet events as
shown in Algorithm 2. When a packet is forwarded, the



interface records the prefix, timestamp, and size in the
packet history and increments the total number of pack-
ets sent. If the packet is subsequently satisfied, the corre-
sponding timestamp and size are retrieved to compute the
packet’s latency and update the throughput history. Jitter
is calculated as the variation in packet latency, measured
as the absolute difference in latency between successive
packets. The loss rate is updated using an exponentially
weighted moving average (EWMA) [9] with a smoothing
factor o = 0.83. If a packet is satisfied, the loss rate is
updated as LossRate <— « X LossRate, and if a packet
times out (i.e., not delivered within 5 seconds), it is
updated as LossRate < « x LossRate + (1 — «).

The raw values from the six metrics are typically
calculated based on the packet history. The exceptions
are the max bandwidth and queue fill rate, the first of
which is fixed and immutable, while the other varies
based on how full the queue is at the time of scoring.
The success probability is updated as packets are either
satisfied or timed out. In contrast, the packets sent is a
running history of the total number of packets sent on
an interface in recent history. At each scoring interval,
throughput and jitter are calculated using a five-second
rolling history. The total size in the running history is
totaled to calculate the throughput, while the jitter is
calculated using the latency variance recorded in said
history.

Score = (1 — Loss Fraction) x w1 + Bandwidth X w2
+ (1 — Queue Fill Ratio) x w3 — Packet Sent X w4
+ (1 — Jitter) x ws + Throughput X we
ey
All metrics are collected per interface at the time of
scoring and normalized to the range [0, 1]. The overall
score for each interface is then computed as a weighted
sum, as shown in Equation 1, where each weight is
constrained to lie between 0 and 1 and the sum of all
weights equals one. The process of determining suitable
weights requires thorough and systematic exploration,
which is detailed in the following sections.

IV. PERFORMANCE EVALUATION

In this section, we discuss our simulation setups and
our evaluation. We first conducted a sensitivity analysis
to find the optimal weight parameters for iMPROVE.
We then defined four simulation scenarios, which varied
with respect to background traffic or link failure. We
analyze the performance of each architecture in all
scenarios, which include baseline NDN, iCAAP, DICE,
and iMPROVE with two combinations of weights (Best
and Average combination of weights). We analyzed the
latency, loss rate, and overhead performance of each of
the architectures. We ran this on an experiment using
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Fig. 2: 77-Node topology

ns-3 on a computer running Ubuntu 20.04 and Intel(R)
Xeon(R) W-2245 CPU @ 3.90GHz, 128 GB of RAM.

This experiment ran on a network composed of an
undirected graph G(V, E) with |V| =77 and |E| = 135
as shown in Fig 2.

HCV, |Hl=7, R=V-H, |R|="T0.

The induced subgraph G[H] is the complete graph K,
which forms a highly reliable central backbone. Regular
nodes in R are embedded in R? to simulate geographic
dispersion and approximately 0.8 |R| nodes connect
exclusively to their nearest hub, while the remaining
0.2|R| nodes each connect to multiple hubs to ensure
redundancy.

A. Optimal Weights

To determine the optimal weight parameters, we con-
ducted a sensitivity analysis on a smaller network using
four different topologies, each consisting of 18 nodes.
These topologies were generated using the Barabasi-
Albert algorithm, the Erdos-Renyi algorithm, and two
variations based on the Watts-Strogatz model. In the first
Watts-Strogatz variation, nodes were connected to four
neighbors, while in the second, nodes were connected to
either 4, 6, or 8 neighbors.

To identify the optimal set of parameter weights,
we performed a sensitivity analysis for each topol-
ogy by systematically exploring all feasible combina-
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Fig. 7: Loss, Latency, and Packet Overhead in BT and LF scenario.

tions of six weights, wy,ws,...,ws, each represent-
ing weight for one of the following network metrics:
maximum bandwidth, success probability, queue fill
rate, number of packets sent, jitter, and throughput.
Each weight was restricted to values in the discrete set
{0.05,0.10,...,1.00}, and all combinations satisfying
the constraint 2?21 w; = 1, as shown in Equation (2),
were considered. This exhaustive evaluation enabled a
comprehensive sensitivity analysis, providing insight into
how varying the relative importance of each parameter
affects overall network performance.

6
w; € {0.05,0.10,...,1.00},Vi € {l,...,6},Zwi =1
i=1
2)

Each scenario involved running a 100-second simu-
lation, during which we calculated the loss and latency
metrics for three different types of traffic. Average loss
and latency values were computed for each traffic type
across all four topologies for each weight combination.
This process provided us with average loss and latency
metrics for all three traffic types across every combina-
tion of weights. To evaluate these weight combinations,
we assigned a score to each set based on the following
weighted sum:

Score = 0.3 % IOSSTypeI + 0.3 X latencyTypeI
+0.24 x losstyperr + 0.06 X latencypy .;p (3)

+0.10 X losstyperrr + 0 X latencyry,q 111

As per Equation 3, loss and latency metrics



were weighted most heavily for Traffic Type I,
with Traffic Type II receiving the next highest
weights. From the full set of candidate weight
vectors, the twenty highest-scoring combinations
were selected and their arithmetic mean computed,
yielding the average weight vector wjp,, =
[0.1525,0.1900, 0.1600,0.2175,0.1475,0.1325]. Type 1
traffic was designated as high-priority, and the average
loss and latency for Type I flows were calculated across
all four network scenarios for each candidate weight
combination. To illustrate the inherent trade-off between
loss and latency, a Pareto frontier was constructed
with normalized values of loss and latency as seen in
Fig. 3, where each point represents a non-dominated
weight vector for which neither loss nor latency can
be simultaneously reduced. The datapoint located at
the lower left corner of the Pareto frontier corresponds
to the weight vector that achieves the lowest values
for both loss and latency. Accordingly, the globally
optimal weight vector for Type I traffic was identified
as Wpest = [0.25,0.10,0.05, 0.45, 0.10, 0.05].

B. iMPROVE Performance Evaluation

We conducted simulations on a 77-node network
(Fig. 2) over a 151-second interval. The study con-
sidered four scenarios: No Background Traffic and No
Link Failure (NBT-NLF), No Background Traffic with
Link Failure (NBT-LF), Background Traffic with No
Link Failure (BT-NLF), and Background Traffic with
Link Failure (BT-LF). Background traffic corresponds
to elevated Type III traffic, where 44 nodes generate
approximately 2500 Type III packets per second. Link
failures were randomly induced by disabling 26 out of
135 edges during the intervals 25-50s, 75-100s, and
125-150s. Average loss, latency, and packet overhead
were calculated over ten independent runs for each
scenario.

Fig. 4 presents the results for the NBT-NLF sce-
nario. The iCAAP approach performs poorly, even in
the absence of background traffic and link failures,
primarily due to token bucket overloading. The other
three methods exhibit comparable performance under
these conditions. Notably, iCAAP incurs an overhead
approximately 15 times greater than the baseline method,
while iMPROVE exhibits roughly twice the overhead.
Fig. 5 illustrates the results for the NBT-LF scenario.
iMPROVE achieves significantly lower packet loss than
the other strategies. Although latency increases slightly,
this can be attributed to the utilization of additional
routes and longer paths. It is also observed that iM-
PROVE incurs higher overhead in NBT-LF compared
to NBT-NLF due to increased loss rates necessitating
additional packet transmissions for successful delivery.

The performance of DICE remains similar to that of the
baseline approach across both scenarios.

Fig. 6 shows the results for the BT-NLF scenario.
iMPROVE demonstrates substantial improvements over
the other approaches and achieves the lowest latency by
effectively distributing background traffic and prevent-
ing link congestion. In this scenario, iMPROVE incurs
slightly higher overhead than iCAAP, primarily due to
increased packet disruption from background traffic. To
ensure successful delivery, iIMPROVE transmits packets
across multiple paths, which results in more packets
being counted in the overhead metric. In contrast, iCAAP
reports lower overhead largely because approximately
~20% of its traffic is lost and not included in the
measurement. Fig. 7 presents the results for the BT-
LF scenario. Consistent with previous cases, iIMPROVE
demonstrates a marked improvement over the other
methods. This can be attributed to its ability to adapt
rapidly to link failures, in contrast to the other strategies.
While loss rates are elevated in this scenario due to re-
maining links being heavily congested with background
traffic, IMPROVE experiences only a slight increase in
loss compared to NBT-LF. The latency for iMPROVE
remains favorable, and follows the same trend observed
in BT-NLF. Overhead in this scenario is comparable to
that of BT-NLF, while iMPROVE exhibits slightly lower
overhead than iCAAP.

V. CONCLUSION

The proposed iMPROVE architecture introduces a
network-aware forwarding strategy that makes routing
decisions based on current network conditions. By lever-
aging NDN for traffic prioritization and employing a
token bucket mechanism for flow regulation, iMPROVE
achieved lower loss rates, latency, and packet overhead
than traditional approaches. The method maintained
strong performance even with heavy background traffic
and during link failures, ensuring reliable service for
high-priority packets while making efficient use of net-
work resources. For future work, we aim to investigate
adaptive parameter tuning so that iMPROVE can better
respond to changing traffic patterns. We also plan to
integrate iMPROVE with additional congestion control
techniques to further improve efficiency under high net-
work loads.
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