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Resource Allocation for Federated Knowledge
Distillation Learning in Internet of Drones

Jingjing Yao™', Member, IEEE, Semih Cal, and Xiang Sun™', Member, IEEE

Abstract—The Internet of Drones (IoD) integrates drone
technology with the Internet of Things, enabling efficient data col-
lection and communication applications. Federated learning (FL)
in IoD networks facilitates collaborative model training while
preserving data privacy but imposes significant computational
and communication demands on resource-constrained drones.
Federated knowledge distillation learning (FedKD) addresses
this challenge by training both a large teacher model and a
smaller student model locally but only updating the smaller
student model, thereby reducing communication overhead. This
article tackles the resource allocation problem in FedKD within
IoD networks, focusing on optimizing CPU computing resource,
wireless transmission power, and bandwidth allocation to min-
imize overall drone energy consumption. We formulate this as
an optimization problem, considering constraints on latency,
computing resource, bandwidth, and power. To effectively address
this problem, we design a low-complexity algorithm. Extensive
simulations validate our approach, showing it reduces energy
consumption by an average of 85% compared to FedKD and
94% compared to FedAvg (a standard FL algorithm).

Index Terms—Bandwidth allocation, CPU control, federated
knowledge distillation learning (FedKD), federated learning (FL),
Internet of drones (IoD), Internet of Things (Io0T), power control,
resource allocation.

I. INTRODUCTION

ITH the development of emerging applications, such
Was smart cities, smart homes, smart industries, and
healthcare, the number of Internet of Things (IoT) devices
has increased explosively [1] and is expected to exceed 75
billion by 2025 [2]. The Internet of Drones (IoD), where
drones act as IoT devices, has gained significant attention due
to its high mobility and flexibility. IoD is widely applied in
traffic monitoring, disaster management, precision agriculture,
and more [3]. Modern IoD applications often require the
integration of machine learning (ML) techniques to enable
autonomous decision-making, pattern recognition, and real-
time data analysis. Typically, centralized ML is applied in
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these scenarios, where large volumes of data collected by
drones are transmitted to a remote cloud for processing and
analysis. However, centralized ML poses privacy risks, as
sensitive data from drones must be transmitted over potentially
insecure wireless networks [4].

Compared to traditional centralized ML, federated learning
(FL) is an emerging distributed approach that addresses pri-
vacy concerns by avoiding raw data transmission [5]. In IoD
networks, FL allows multiple drones to collaboratively train
a global model without sharing private data [6]. Instead, each
drone keeps its data locally and transmits only the parameters
of its trained model. In the standard FL process, known as
FedAvg [7], the global model is sent to all drones at each
iteration. Drones then update their local models with private
data and upload the new parameters to a ground base station
(BS). The BS aggregates these parameters to refine the global
model and redistributes it to the drones. This iterative process
of local training, parameter aggregation, and global updating
continues until the desired model accuracy is achieved.

While FL offers a promising framework for privacy
preservation, its implementation in IoD networks poses
significant challenges, especially in resource-constrained envi-
ronments [8]. One challenge is the size of modern deep
learning models, which often contain billions or trillions
of parameters [9], [10]. Transmitting these large parameters
creates significant communication overhead, making it difficult
for wireless networks with limited bandwidth to manage.
Another challenge is the increased battery consumption caused
by frequent parameter exchanges, which is problematic for
drones with limited battery capacity, reducing the overall
efficiency of FL in IoD networks.

Federated knowledge distillation (FedKD) [11] is a promis-
ing approach that integrates knowledge distillation (KD) [12]
with FL to enhance the efficiency of distributed learning. In
FedKD, both a large teacher model and a smaller student
model are trained collaboratively on drones. The student
model, designed to mimic the performance of the larger
teacher model, captures essential knowledge without requiring
the full complexity of the original model [13]. Crucially, only
the lightweight student model is transmitted to the BS for
aggregation, minimizing communication overhead. Therefore,
FedKD mitigates the issue of transmitting large model parame-
ters by limiting communication to the smaller student models,
and also reduces the size of data exchanges, conserving drone
battery life [14].

Investigating the resource allocation problem in FedKD
is crucial due to the inherent constraints and challenges in
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IoD networks. One of the primary challenges is the limited
computational capacity of drones, which necessitates efficient
use of CPU computing resources for training both teacher
and student models. It is important to carefully allocate CPU
resources to ensure that both models can be trained effectively.
Another challenge is the limited battery life of drones, which
impacts their ability to continuously perform computational
tasks and communicate with the BS. To address this, it is
essential to design wireless power allocation strategies that
optimize power usage across different drones. Additionally, the
constrained communication bandwidth in IoD networks poses
a challenge for transmitting model parameters. To mitigate
this, it is crucial to allocate wireless bandwidth efficiently.

Based on the above analysis, we investigate the resource
allocation problem for FedKD in IoD networks. Specifically,
we jointly optimize CPU computing resource allocation, wire-
less power allocation, and wireless bandwidth allocation to
minimize the energy consumption of all drones while adhering
to constraints on CPU computing resource, training time,
and bandwidth. The major contribution of this work can be
summarized as follows.

1) We investigate the resource allocation problem in
FedKD within resource-constrained IoD networks, opti-
mizing the use of limited computing and communication
resources.

2) We formulate the joint optimization of CPU comput-
ing resource allocation, wireless power allocation, and
bandwidth allocation with the objective of minimizing
the energy consumption of all drones while satisfying
constraints on computing resource, training time, band-
width, and power.

3) We design an alternative algorithm to address the
problem by iteratively solving two subproblems:
a) jointly optimizing CPU resource allocation and global
iteration time and b) jointly optimizing wireless power
and bandwidth. The process repeats until convergence.

4) Extensive simulations validate the effectiveness of our
approach, showing improved performance on energy
consumption and model accuracy. The results demon-
strate that our algorithm reduces energy consumption
while maintaining high accuracy, outperforming existing
methods.

The remainder of this article is organized as follows.
In Section II, we review the existing literature. Section III
presents our system model and analyzes the drone energy
model. In Section IV, we formulate our joint optimization
problem to optimize CPU computing resource, wireless trans-
mission power, and bandwidth allocation in FedKD within
IoD networks. Section V elaborates on our designed algorithm
to effectively address this problem. The performance of our
algorithm is demonstrated and analyzed through simulation
results in Section VI. Finally, we conclude this article in
Section VII.

II. RELATED WORKS

Several researchers have conducted studies on IoD
networks. Abualigah et al. [15] provided a comprehensive
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survey of IoD applications and the integration of IoD with
technologies, such as neural networks, blockchain, and privacy
protection. Shirabayashi and Ruiz [16] reviewed the litera-
ture on UAV path planning optimization, comparing various
mathematical models and techniques, and highlighting the
advantages, safety, and potential for integration with IoD
networks. Grieco et al. [17] designed an open-source tool for
IoD simulation called IoD-Sim, based on ns-3. It features
a three-layer stack: 1) the underlying telecommunications
platform; 2) the core for fundamental IoD scenario features;
and 3) a simulation development platform for graphical
design of use cases. Yao and Ansari [18] investigated the
joint optimization of power control and energy harvest-
ing in time-varying IoD networks by deep reinforcement
learning.

Resource allocation in FL has been studied in various
research. Yang et al. [19] tackled an optimization problem to
minimize total energy consumption during the FL process by
considering both local computation and transmission energy
under a latency constraint. Mo and Xu [20] enhanced system
energy efficiency in FL by jointly optimizing communication
resource allocation for global ML-parameters aggregation
and computation resource allocation for local ML-parameter
updates. Chen et al. [21] explored communication-efficient FL
over wireless IoT networks with limited resources, formulating
a joint optimization problem for client scheduling and resource
allocation while considering bandwidth and power constraints.
Yao and Ansari [22] investigated the joint optimization of CPU
frequency control and wireless transmission power control for
all IoT devices in fog-aided IoT networks. Their study aimed
to balance the tradeoff between device energy consumption
and FL time.

Resource allocation in FL within IoD networks has been
investigated in various research studies. Zhang et al. [23]
proposed a semi-supervised FL framework to address
data privacy and availability challenges in IoD networks.
Shvetsov et al. [24] introduced a novel framework that inte-
grates intelligent reflecting surfaces (IRS) and FL with drones
to enhance 6G communication networks, improving coverage,
reliability, and energy efficiency through smart signal reflec-
tion and collaborative learning. Shen et al. [25] minimized the
overall training energy consumption of FL in IoD networks
by jointly optimizing the local convergence threshold, local
iterations, computation resource allocation, and bandwidth
allocation while ensuring FL global accuracy and adhering to
maximum training latency constraints. Yao and Ansari [26]
focused on the power control of all drones to maximize the FL
system security rate, taking into account drone battery capaci-
ties and FL latency requirements. Pham et al. [27] proposed an
energy-efficient FL algorithm that optimizes UAV placement,
power control, transmission time, model accuracy, bandwidth
allocation, and computing resources to minimize total energy
consumption for aerial servers and users. Wang et al. [28§]
developed a two-tier hierarchical FL scheme assisted by a UAV
swarm, where UAVs offload their data to the BS during the
local training phase and act as relays to assist the parameter
server and local clients in forwarding ML models during the
remaining time.
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Fig. 1. FedKD in IoD networks.

KD was introduced by Hinton et al. [12], and it has
gained attention as a method for accelerating learning by
transferring knowledge from a teacher model to a student
model. Li and Wang [29] were among the first to leverage KD
in FL. Wu et al. [11] proposed the FedKD framework, which
is based on adaptive mutual KD. This framework trains both
a large model and a small model on the client side, trans-
mitting only the smaller student model to the server, thereby
reducing communication overhead while improving accuracy.
Wen et al. [30] introduced Fed2KD, a communication-efficient
FL framework that employs a novel KD scheme with an
attention mechanism and metric learning. Chen et al. [31]
designed a KD-based FL optimization problem that accounts
for dynamic local resources. Gad et al. [32] explored path
optimization and transmission organization algorithms to min-
imize flight time and extend the range of UAVs, using
self-organizing maps for path planning and KD-based FL to
reduce communication overhead.

Our recent work [33] investigated CPU computing resource
optimization in FedKD within IoD networks. However, to the
best of our knowledge, no research has addressed the joint
optimization of CPU computing resource, wireless transmis-
sion power, and bandwidth allocation in the FedKD framework
for IoD networks. To fill this gap, we investigate the resource
allocation problem, aiming to minimize the energy consump-
tion of all drones while considering constraints on latency,
computing resource, power, and bandwidth.

III. SYSTEM MODEL

In our system model, as shown in Fig. 1, there are K drones
(indexed by set K = {1, 2, ..., K}) deployed in the air. These
drones collaborate with a ground BS to train a global ML
model for applications, such as object recognition and traffic
monitoring. The communication between the UAVs and the BS
follows frequency division multiple access (FDMA) protocol,
where the available bandwidth is divided into frequency
bands, and each UAV is allocated a specific band for data
transmission. In the FedKD framework, each drone contains
a dual-model architecture including a larger, more complex
teacher model, and a smaller, more efficient student model.

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 7, 1 APRIL 2025

The teacher model generates high-quality predictions and
guides the training of the student model. To train this dual-
model, an adaptive mutual distillation loss that combines both
the loss from the teacher model and the loss from the student
model is minimized. The parameters of the smaller student
models from the drones are shared with the BS for aggregation
to ensure system efficiency. The specific process of FedKD in
IoD networks operates through a series of global iterations.
In each global iteration, the BS broadcasts the current global
ML model to all drones. Each drone then trains its dual-model
locally and updates the parameters through multiple local
iterations. After completing local training, only the student
model parameters are sent back to the BS for aggregation. This
process of global iterations is repeated until a desired level
of accuracy is achieved or the maximum number of global
iterations is reached.

A. FedKD Training Time

In each global iteration, each drone’s FedKD training time
consists of the local computation time for updating dual-
model parameters and the wireless data transmission time
for uploading the student model parameters. Note that the
broadcasting time from the BS to drones is typically much
smaller than the local training and parameter transmission
time, so we neglect it in our work [34]. For drone k, the local
computation time for the teacher model is 7" = (C}*Dy/f{%),
and for the student model, it is ;" = (C;"Di/fe™). Here,
C¢ and G} are the numbers of CPU cycles required to
train a data sample in one local iteration for the teacher
and student models, respectively. fi* and fi™ are the CPU
frequencies of the teacher and student models, respectively,
and Dy is the number of data samples in the dataset. Since the
teacher and student models are trained simultaneously during
the local training process, the total local computation time tzmp
is determined by the longer of 7 and "

cmp t
1P = Lemax{r?, "} = I max{

C]t(aDk C]S(tuDk
g (1

where [; is the number of local iterations.

The wireless data transmission time is influenced by
the wireless channel between the BS and the drones. We
adopt the widely accepted drone communication model [35],
which assumes that the wireless channel between the BS
and drones follows a probability model that can be either
line-of-sight (LoS) or non-LoS (NLoS). The probabili-
ties of being LoS and NLoS are given by Pr(LoS) =
(1/[1 4+ aexp(=BL(180/7)0 — a)]) and Pr(NLoS) = 1 —
Pr(LoS), respectively, where « and S are environment-
related constants (e.g., rural or urban areas), and 6 is the
elevation angle as shown in Fig. 1. The LoS and NLoS
path loss models follow the free space propagation loss
model, given by PL(LoS) = 20logq(4nf.d/c) + &L0s and
PL(NLoS) = 20log;q(4nf.d/c)+ENLos, Where &1 os and ENLos
are environment-related constants, f. is the carrier frequency,
c is the speed of light, and d is the distance between a drone
and the BS. The average path loss can be calculated as PL =
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Pr(LoS) - PL1 s + Pr(NLoS) - PLnros, and thus the wireless
channel gain between a drone and the BS is G = 10~ PL/10),
According to the Shannon equation, the data transmission
rate from drone k to the BS is given by rx = Bylog,(1 +
[pxGi/NoBi]), where By is the bandwidth allocated to drone
k, px is its wireless transmission power, Gy is the wireless
channel gain, and Ny is the noise power spectral density.
Consequently, the wireless parameter transmission time for

drone k is
eom — 2 ®)

Tk

where s; is the data size of the student model. In summary,
the FedKD training time for drone k in one global iteration is
+ %M. 3)

te=1"

B. FedKD Energy Consumption

The energy consumption of a drone arises from performing
local model training and wireless data transmission. We
assume that the drone’s mobility and FedKD operations are
powered separately by the drone’s motor battery and the
battery associated with the computing board, respectively.
Therefore, we focus solely on the energy consumption related
to FedKD operations in our work.

The energy for local computation is consumed by training
both the teacher and student models. The energy consump-
tion for processing a CPU cycle of the teacher model is
K ,g“)z, where « represents the switch capacitance-related
constant [36]. Thus, the energy consumption for training the
teacher model in one local iteration is E = KC,’(”Dk(fli“)z,
where C} is the required CPU cycles per data sample for the
teacher model and Dy, is the number of data samples. Similarly,
the energy consumption for training the student model in one
local iteration is EJ" = KC,i‘”Dk(f,ft“)z, where C}" is the
required CPU cycles per data sample for the student model.
Therefore, the total energy consumed in local computation for
drone k is

Ezmp — Ik(E]t(u 4 Els{tu)
= Ik CEDL(fE) + kD] @

The energy consumption of wireless data transmission for
uploading student model can be calculated as

PkSk

Ezom — pkt]iom —
Tk

4)
In summary, the energy consumption of drone k in a global
iteration is

Ex=E"" + E™. (6)

IV. PROBLEM FORMULATION

In this section, we formulate the resource allocation problem
for optimizing CPU computing resources, wireless transmis-
sion power, and wireless bandwidth in FedKD within IoD
networks. The objective is to minimize the total energy
consumption of all drones while considering constraints on
training time, CPU computing resource, wireless power,

8067

and wireless bandwidth. The problem can be formulated as
follows:

K
PO: min

2 ‘ -
o2 [cCiDe(f)? + kG DR ()]
k kX k 3 (s 3 k:l

S
+ kDPk -
by 10g2(1 + %)
st N < fla g st < pmax g e [ (7)
ClDy  CMDy
Ikmax{ fta ’ stu
Jk k
Sk
+ Sy =T Vkek (8)
bk log2<1 + %)
K
> b <B ©)
k=1
et <pe<pg” VkeK. (10)

The objective of problem PO is to minimize the total energy
consumption of all drones, including energy used for both
local computation and wireless data transmission, as defined
in (6). Constraint (7) ensures that the total CPU computing
resources allocated for training both the teacher model and
the student model on each drone k remain within the physical
and operational limits of the drone’s computational capacity.
Specifically, the sum of the CPU frequencies allocated to
the teacher model f{ and the student model fi™ should lie
between a predefined minimum f™" and maximum f"**.
These bounds represent the operational range of the drone’s
CPU, where fkmin corresponds to the minimum frequency
required to ensure efficient operation, and f;"** corresponds to
the maximum frequency that the drone hardware can support
without risking overheating or excessive power consumption.
In each global iteration of FedKD, all drones transmit their
parameters to the BS for aggregation. The BS should receive
the parameters from all drones before performing the aggre-
gation. Therefore, the total time #; required for computation
and communication of each drone in one global iteration
should be within the global iteration time 7, as specified
in (8). Constraint (9) imposes a bandwidth allocation limit,
requiring the total bandwidth assigned to all drones to stay
within the available bandwidth B. Constraint (10) ensures that
each drone’s wireless transmission power remains within the
allowed range, bounded by p}(ni“ and p;"**. The lower bound
pp'" ensures the drone has sufficient power to maintain reliable
communication with the BS, overcoming channel noise and
path loss. The upper bound p*®* limits the power to prevent
hardware damage.

It is important to note that obtaining the solution to problem
PO is challenging due to its nonconvex nature, which makes
it difficult to solve using standard optimization techniques.
To address this, we design a low-complexity algorithm that
efficiently finds a solution by breaking down the problem into
more manageable subproblems in next section.
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V. ALGORITHM DESIGN

To address the complex problem PO, we propose an alter-
nating iteration method to optimize (f, f", r) and (b, pi)
in turn. In this method, we first solve the subproblem of
optimizing f{*, £, and t while keeping by and py fixed. Next,
we address the subproblem of optimizing by and p; while
keeping f19, £, and t fixed. These two steps are repeated
iteratively until the objective value of problem PO converges
to a stable solution or the maximum number of iterations is
reached.

A. Joint Optimization of CPU Frequency and Global
Iteration Time

In this subproblem, we fix the wireless bandwidth and power
(br, pr) as (b}, py) that satisfy (9) and (10). Then, problem
P0 becomes a joint optimization of CPU frequency and global
iteration time

min Zlk[ D)’ + e Di ()’ ]

. f stu
s.t. (9)
CtaD CstuD
Iymax{ —& k, Ll Y o T <t
fta fstu % Pka
S/ by logy (1+ Kt )
Vk € K. (11)

Note that the item (sgp/[by logy (1 + [p;Gk/NobiD]) in the
objective function of problem PO is removed because it is a
constant and does not affect the solution of the problem.

The difficulty in addressing problem P1 lies in the global
iteration time v in (11), as it couples f{* and fZ" for
different drones. In other words, problem P1 is straight-
forward to solve without (11) by decomposing it into K
independent subproblems and addressing each subproblem
separately. Since drones upload their parameters to the BS
simultaneously, the global iteration time depends on the
slowest drone, which has the longest FedKD training time.
Motivated by this analysis, we enumerate t as the FedKD
training time for each drone, considering each drone as
the potential slowest one. We assume drone j is the slow-
est, thus 7 = 1; = Imax{(C"‘D]/f’“) (CSt“DJ/fS‘“)} +
(s;/1 b* log, (1 4+ [p Gj/Nob* ). Then problem P1 can be
transformed into two cases: one for k = j and another for
k #j.

For the case when k = j, problem P1 becomes

2
III:KC;aD]<JI ) +KcSIUD ( stu) i|

P1-1: min

J?ta’];stu’.[j

s.t. J;_min Sf]-‘taz +]3stu Sf]-_max (12)
C“D; C™D; :
Vit Bt Sj

Ijmax{ fta ) fstu } PG = f]
J J b*10g2(1+1\;b*>

(13)

where we can get the specific value of 7; so it can then be
considered a constant.
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For the case when k # j, problem P1 can be separated into
following subproblems:

P1-2: min Zlk[KC Dk(f ) +Kcstu stu)Z]
f,éafkstuk !
SN SO < Vee K\ (14)
C/t{aDk C‘ZtuDk
Ikmax{ f]ia ’ fstu }
+ * <1 VkeK\j (15)

bilogy(1+5i2) ~
It can be observed that the objective function of problem
P1-1 is an increasing function \yith regard to fjm and ];St“.
Hence, we can set ];-’“ + ];sm = fjmm tq minimize the objective
function. We then substitute fS“‘ = fm‘“ f’“ into the objective
function, which becomes ’H(f’“) = I ik [C}f (f’“)2 + CStu (fm”‘

f’“) 1D;. To minimize the ObJeCtIVC functlon ’H(ft“) we take
the first derivative and set it to zero. So, we have H (f’“) =

Lk [2CHfi — Csm(}”’mn —f{)1D; = 0. Therefore, the optimum
solutron of fm can be calculated as
stuemin
ta* __
];' - C]t_a +st_tu (16)
and the optimum solution of ];-St“ is
ta rmin
o
=t (17
cj + cj
The global iteration time 7; can then be calculated as
C“D; CS“D; :
ity Bt 5
tjzljmax{ P }—i— P (18)
J J b¥ logz(l + 5 b»;)
Problem P1-2 is a convex problem and so we

address it by solving the Karush—Kuhn-Tucker (KKT)
conditions. (15) is equivalent to Ik(C,’C“Dk/flé“) +
(/16 logs (1 + [pEGi/NobED]) < 7 and L(CRUDi/fi) +
(sk/[b; logy (1 + [p; Gk /NobiD]) < ;. Hence, we have

I.CHDy,
Rz —— (19)
7 brlog ( kak)
ko2 Nob§
and
I Citu
[ . (20)

T — — %
b 10g2(1+N b*>

The Lagrangian function of the objective in problem P1-2 is
E(f , stu U, V) — IkK[C’“(fk’“)z + C]s(tu(fkstu)Z]Dk + u(fkmm _
R’ fksm) + (i + ™ — f*). The KKT conditions are as

follows:
af =2k C f,f”Dk —u+v=20 21
ac stu estu
afsm =2LkCf "Dy —u+v=0 (22)
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M[ kmin _f]i‘a _fkstu] =0 (23)
v+ =] =0 (24)
u>0,v=>0. (25)

Based on (21) and (25), we can conclude u > 0. By
substituting it to (23), we have f,?‘in - =" =0, and
so fi¢ 4+ f" — f"* s 0. Hence, we have v = 0 based
on (24). Combining v = 0 with (21) and (22), we obtain
2k CEfI*Dy = 2Lk G Dy. Therefore, the solution of the
KKT conditions is fi* = (CRUf™/[C)¢ + C}]) and i =
(CEfm™/[C¢ + C3™]). Combining this with (19) and (20), the
solution of problem P1-2 is

4 — max G LG Dy (26)
= clay csw ¢ Sk
k k J *
b logy ( 14765k
i 1ogr | 1+ Noblt
and
ta rmin stu
fstu max kJk Ikck Dk (27)
kK Cla Cstu [ Sk
PG T

P{Gx
by log2<l+N/;)bl,:>

To obtain the optimal solution for problem P1, we choose
the best result generated by enumerating all possible slowest
drones j € K. Specifically, for each candidate slowest drone j,
we first solve problem P1-1 and then problem P1-2. We record
the possible objective value and the corresponding fkm, % and
7j. After completing all enumerations, we select the best £,
/2%, and 7; that yield the minimum objective value as our final
solution. The process for addressing problem P1 is outlined
in Algorithm 1. lines 1-3 initialize the candidate vector of
possible objective values for each enumeration. Lines 4-12
enumerate each possible slowest drone. Line 5 calculates the
CPU frequencies of the slowest drone, and line 6 calculates the
global iteration time. Lines 7-9 determine the CPU frequencies
for all other drones. Lines 10 and 11 store the possible
objective value. Finally, lines 13 and 14 select the best solution
among all possible objective values. Lines 1-3 execute in
O(K) time. The loop in lines 7-9 has a time complexity
of O(K), making the overall complexity of the loop from
Lines 412 equal to O(K?). lines 13 and 14 run in constant
time O(1). Therefore, the total computational complexity of
Algorithm 1 is O(K?).

B. Joint Optimization of Wireless Power and Bandwidth
Allocation

In this subproblem, we fix (f{%, ™, ) as (f*", ff"", t¥),
and the problem PO becomes
K s
P2: inin KDk G
ert (T bylog, (14 Rk )
s.t.  (9), (10)
Cl“py c,ituDk}

Iy max { —_—, ——
ta*x stu*
f i
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Algorithm 1: Algorithm for Joint Optimization of CPU
Frequency and Global Iteration Time

1 for each j € K do

2 ‘ Initialize candidate vector V[j] =0 ;

3 end

4 for each j € K do

5 Calculate drone j’s CPU frequencies f/* and f;*
according to (16) and (17) ; ‘

6 Calculate the global iteration time 7 according to
(18) ;

for each k € K\ j do
Calculate drone k’s CPU frequencies f{* and fi™
according to (26) and (27) ;

9 end

10 Calculate the objective value R of problem P1 ;

11 Assign V[j] = R and record corresponding f;* and
fkstu .

12 end

13 Choose j that achieves the minimum V] ;
14 Select the corresponding f{* and f{™ as the optimum
solution of problem P1 ;

Sk
+ <t

G,
b 10g2(1 + %)

Vk e K. (28)

Note that the item L[k CEDy(fi**)? + k C{Dp(ff™")?] is
removed in the objective for simplicity because it is a constant
and does not affect the optimal solution. It is challenging to
address problem P2 because of its nonconvexity, so we intro-
duce another variable 7 = (sk/[bx log, (1 + [pxGr/Nobk])]) to
simplify this problem. Then, problem P2 becomes

K
P3: min t
bicspisti ;Pk ¢
st (9), (10)
CtaD CstuD
n<t* —Ikmax{’;T*", kw*"} Vke K (29)
I i
G
teby 10g2(1 + ’%) =5 VkeKk. (30)
00k

It is still challenging to solve problem P3. Therefore, we
design an iterative method to address it. In this method, we
first fix # and then use the obtained values of by and py to
update ;. We repeat this process until the objective value of
problem P3 converges to a stable value.

We first fix #; as t,f that satisfies (29). Then, problem P3
can be transformed into

K
P3-1: min Y pit;f
bi.pr k; k

s.t. — (9), (10)
PrGi

t:bk 10g2<1 + M) =sr Vke K. a3n
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Equation (31) is equivalent to py = (Nobr/Gy) 26/ %P0 — 1),
By substituting it into problem P3-1, we have

Nob
P3-2: min 07k <2"”’k - 1);;;
by Gk
k=1
s.t.  (9)

. Nob *
p;(nm < (O;kk (2' (L - 1) <pmle Vke K. (32)

Lemma 1: Problem P3-2 is a convex optimization problem.
Proof: To demonstrate the convexity of problem P3-2,
we obtain the first derivative of the objective function g(by) =

YK et = YK (Nobi/Gr) QUHAP0 — 1)z s

&' (by) = ﬁ;% = M(ZIM 1 s"j“grtm)
abk Gk tkbk
_ Not; _ NosgIn2 2%—@ B Not; .
Gy Giby Gy
The second derivative is
« 0Dk Nosk (In2)%> &
' P
bk t 2%k < Q. 34
8 ( ) k azb th?;bz ( )

Therefore, the objective function is a convex function and py
is a convex function with regard to bg. (32) is hence a convex
set. Additionally, (9) is a convex set. In summary, problem
P3-2 is a convex optimization problem. |

Because we have the second derivative g’(by) =
(apk/azbk) > 0, g (bx) = (3py/0by) is an increasing function.
Note that (apk/azbk) — 0 when by — oco. Hence, we have
(0pr/0bi) < 0, and so py is a decreasing function with regard
to by. Let bkmi“ and b;"* be the minimum and maximum values
of by, respectively. Then, we have

P = %(2 1) (35)
and
Pt = 1%?1(2@’% — 1). (36)
Therefore, (32) is equivalent to
bR < by < B k€ K. (37)

Since problem P3-2 is a convex problem, we can
obtain its solution by solving its KKT conditions. The
Lagranglan function of the objective function is L(bg, A) =
S hy (Nobi/Gi) QUK EP0 — 1) 4 A(Y &, b — B). The KKT
conditions include

0Lk N) _ (Not;g _ Nosk 1n2>2[£’b‘k Not h—0

by, Gy Giby, Gy
(38)

K

A(Zbk—B> =0 (39)
k=1

A>0 (40)

PN < by < PPk € K. (41)
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Based on (38), we have g’'(b;) + A = 0. Since g'(b) < 0, we
have A > 0. Substituting it into (39), we then have

K
Zbk—Bzo.
k=1

Assume by and A is the solution of the set of equations
from (38) and (42). Combining these with (37), the solution
of problem P3-2 can be calculated as
bEin, if by < bn
?}cna", if by > b
by, otherwise.

Based on (31), we have p = (Nob/Gy) QU550 — 1. After

that, we can update the value of #; according to
Sk

by log, (1 + 1;&‘()—2;)

Then, we repeat the process of addressing problem P3-2 and

updating #; until the objective value of problem P3 converges.

The process of addressing problem P3 is outlined in
Algorithm 2. Lines 1-3 initialize the auxiliary variable, the
iteration number, and the maximum iteration number /;. Lines
4-14 iteratively calculate the wireless power and bandwidth
and update the auxiliary variable. Specifically, lines 7-9
compute each drone’s bandwidth, line 10 determines each
drone’s wireless transmission power, and line 11 updates the
auxiliary variable. The while loop in lines 4—14 runs /; times
in the worst case scenario. Within each iteration, lines 6—12
execute K times. Specifically, line 8 involves solving a system
of equations by solvers, often with Newton’s method, which
has a time complexity of O(K? - I), where I is the number
of iterations required for convergence [37]. Thus, the total
computational complexity of Algorithm 2 is O(I; - K> - I).

In summary, our proposed algorithm for addressing the
resource allocation problem PO involves iteratively optimizing
two components: 1) the joint optimization of CPU frequency
and 2) global iteration time using Algorithm 1, and the joint
optimization of wireless power and bandwidth allocation using
Algorithm 2. This iterative process continues until convergence
or the maximum number of iterations is reached. The com-
plete process of our proposed algorithm, Federated KD with
optimized CPU frequency, wireless transmission power, and
bandwidth (FedKD-FPB), is outlined in Algorithm 3. Lines
1-4 initialize the wireless power, bandwidth, iteration number,
and maximum number of iterations /;. Lines 6-9 alternatively
calculate the two subproblems. The while loop in lines 5-10
runs /> times in the worst case scenario. Line 7 executes in
O(K?) time from Algorithm 1, and line 8 has a complexity of
O(I-K3-I) from Algorithm 2. Thus, the overall computational
complexity of the proposed FedKD-FPB algorithm is O(/> -
(K>+1,-K3-1)) = O, - I - K - I), which is in polynomial
time.

(42)

by = (43)

ko __
tk—

(44)

VI. PERFORMANCE EVALUATION

In this section, we set up simulations to evaluate our
proposed algorithm FedKD-FPB. The simulations are con-
ducted on a high-performance Dell tower station equipped
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Algorithm 2: Algorithm for Joint Optimization of
Wireless Power and Bandwidth Allocation

1 Initialize # = 1;

2 Initialize iteration number i = O;

3 Initialize maximum iteration number /;

4 while Objective of P3 does not converge and i < I do

5 i=i+1;

6 for each k € K do

7 Calculate drone k’s minimum and maximum
bandwidth b}{nin and b;"™* according to (35) and
(36);

8 Calculate drone k’s bandwidth by by solving (38)
and (42);

9 Calculate drone k’s bandwidth b} according to
(43);

10 Calculate drone k’s wireless transmission power
Py according to (31);

11 Update #; according to (44);

12 end

13 Calculate the objective value of P3;

14 end

Algorithm 3: FedKD-FPB Algorithm

1 Initialize wireless power py = py;

2 Initialize wireless bandwidth b, = bZ;

3 Initialize iteration number i = 0 ;

4 Initialize maximum iteration number I, ;

5 while Objective of PO does not converge and i < I, do
6 i=i+1;

7 Calculate CPU frequency f;* of all drones and global
iteration time t* according to Algorithm 1;

8 Calculate wireless power p; and bandwidth by of all
drones according to Algorithm 2 ;

9 Calculate the objective value of PO;

10 end

with an Intel Xeon W-2245 CPU running at 3.90 GHz across
16 cores, an NVIDIA Quadro RTX 6000/8000 GPU, and
128 GB of RAM. For comparison, we utilize five existing
algorithms. The FedKD algorithm [11] is a federated KD
framework without any resource optimization. The FedKD-
F algorithm [33] optimizes the CPU frequencies of teacher
and student models within the FedKD framework. The FedAvg
algorithm [7] represents the original FedAvg approach, using
a single model for local training. The FedAvg-F algorithm
optimizes CPU frequency within the FedAvg framework.
Lastly, the FedAvg-PB algorithm [21] includes optimizations
for wireless transmission power and bandwidth allocation
within the FedAvg framework.

In our simulation, we have K = 30 drones hovering at
a height of H = 100 m above a square region measuring
1000 x 1000 m. The BS is located at the center of this
region, with drones uniformly distributed across the area.
For the drone wireless channel, the environmental parameters
a and B are set to 9.6 and 0.28, respectively. The speed
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Fig. 2. Energy consumption versus number of drones.

of light ¢ is 3 x 108 m/s, and the carrier frequency f, is
2 GHz. The environment-related parameters &10s and &nLos
are 1 and 20 dB, respectively. The noise power density Ny
is set to —114 dBm/Hz. The CPU switched capacitance «
is 10728, The minimum CPU frequency of each drone f™"
is randomly selected from /(0.2,1) x 10 GHz, while the
maximum CPU frequency f;"®* is randomly selected from
U(2.2,3) x 10 GHz. The total bandwidth B is set to 20 MHz.
The minimum and maximum wireless transmission powers
p,r(“i“ and p;"* are 0.1 and 1 W, respectively. For implementing
the FedKD framework, the teacher model consists of three
convolutional layers and one linear layer, while the student
model comprises two convolutional layers and one linear layer.
These models are trained using the MNIST dataset [38].
Each drone has Dy = 1100 data samples. The required CPU
cycles for the teacher model C} are randomly chosen from
2 x 10° to 4 x 10°, and the student model’s CZ‘“ is one-
third of C,’;“. The student model size s; is 28.1 Mb. The
number of local iterations I is set to 1. The above parameters
are consistent with [34], [35], [39]. Note that these values
are default settings and may be adjusted to investigate their
impacts on performance.

Fig. 2 compares the energy consumption performance
across varying numbers of drones, ranging from 20 to 40. We
observe that as the number of drones increases, the energy con-
sumption of all algorithms also rises. This increase in energy
consumption is due to the additional energy required for local
drone training and wireless data transmission. Our proposed
algorithm FedKD-FPB outperforms all other algorithms due to
its efficient resource utilization. FedKD-F performs worse than
FedKD-FPB because it does not optimize wireless transmis-
sion power and bandwidth. Similarly, FedKD consumes more
energy than FedKD-FPB due to its lack of resource allocation
optimization. FedAvg-F, FedAvg-PB, and FedAvg have higher
energy consumption compared to FedKD-FPB because their
larger model sizes of FedAvg lead to increased computation
and wireless transmission energy consumption, and they lack
resource optimization.

Fig. 3 illustrates the energy consumption of various algo-
rithms with data sample sizes ranging from 1100 to 2700.
As the number of data samples increases, more computation
is required, resulting in higher energy consumption for all
algorithms. Our proposed algorithm, FedKD-FPB, demon-
strates the best performance due to the advantages of the
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FedKD framework and efficient resource optimization. FedAvg
performs the worst, as it involves a larger local model and
lacks optimized resource allocation. FedKD-F and FedKD per-
form worse than FedKD-FPB due to their inefficient resource
management. FedAvg-F and FedAvg-PB have higher energy
consumption because they utilize the FedAvg framework,
which includes a larger local model.

Fig. 4 evaluates the performance of our proposed algo-
rithm with varying total bandwidths ranging from 20 to 40.
We observe that the energy consumption of all algorithms
decreases as the available bandwidth increases. This is because
a higher bandwidth allows for a greater data rate, reducing
data transmission time and, consequently, the energy required
for data transmission. Our proposed algorithm, FedKD-FPB,
consistently consumes the least energy and performs the best
among all the algorithms.

Fig. 5 illustrates the test accuracies of various algorithms
over time. It can be observed that FedKD-FPB, FedKD-F,
and FedKD consistently achieve higher accuracies compared
to FedAvg-F, FedAvg-PB, and FedAvg. This performance
improvement can be attributed to the advantages of the FedKD
framework. Additionally, our proposed FedKD-FPB shows
a slight edge over FedKD-F and FedKD in terms of both
accuracy and convergence speed, due to more comprehensive
resource optimization.

Fig. 6 depicts the accuracy performance of our proposed
algorithm FedKD-FPB compared to FedAvg over time with
different data sample sizes. As the data sample size increases,
the learning performance of both FedKD-FPB and FedAvg
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improves, resulting in higher accuracy. We can also observe
that FedKD-FPB outperforms FedAvg in both accuracy and
convergence speed due to its resource optimization and smaller
local model.

Fig. 7 illustrates the accuracy performance of FedKD-
FPB and FedAvg over time with varying total bandwidths.
Increasing the system bandwidth results in a higher wireless
transmission rate, which leads to shorter learning times and
improved training performance. Consequently, both FedKD-
FPB and FedAvg achieve better accuracy with larger total
bandwidth. Additionally, FedKD-FPB outperforms FedAvg
due to the advantages provided by the FedKD framework.

Fig. 8 illustrates the accuracy performance of FedKD-FPB
and FedAvg over time with both independent and identically
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distributed (IID) and non-IID data. To simulate a non-IID
data distribution, we utilize the Dirichlet distribution [40]. The
distribution is controlled by a concentration parameter, which
we set to 0.1, dictating the level of heterogeneity in the data
distribution across all drones. Training with non-IID datasets
leads to performance degradation compared to IID datasets
due to the imbalance of local data samples. Consequently,
both FedKD-FPB and FedAvg achieve better accuracy with I[ID
datasets. Additionally, FedKD-FPB outperforms FedAvg due
to the advantages provided by the FedKD framework.

Fig. 9 illustrates the test accuracy performance of our
proposed algorithm with different numbers of hidden layers
in the training model. The model is evaluated with 0, 1, and
2 hidden layers. It can be observed that the configuration with
1 hidden layer achieves the best accuracy for both FedKD-
FPB and FedAvg because it strikes an optimal balance between
complexity and generalization, avoiding underfitting of simpler
models and overfitting of deeper ones. Moreover, FedKD-FPB
performs better than FedAvg with all different numbers of
hidden layers.

Fig. 10 shows the test accuracy performance of our
proposed algorithm over time with varying numbers of neurons
in the hidden layers of our training model. Specifically, the
model is evaluated with 256, 512, and 1024 neurons. It can
be observed that both FedKD-FPB and FedAvg with 512
neurons achieve the highest test accuracy and exhibit faster
convergence compared to those with 256 or 1024 neurons. This
is because 512 neurons provide an optimal balance between
model capacity and generalization, avoiding underfitting with
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256 neurons and overfitting or increased training complexity
with 1024 neurons. In addition, FedKD-FPB consistently
achieves higher accuracy and faster convergence than FedAvg
across all neuron configurations.

VII. CONCLUSION

In this article, we have investigated the resource allocation
problem in FedKD within IoD networks. We have formulated
the joint optimization problem of CPU computing resources,
wireless transmission power, and bandwidth allocation with
the objective of minimizing overall drone energy consumption
while considering constraints on latency, computing resources,
bandwidth, and power. We have designed a low-complexity
algorithm to effectively address this optimization problem
by iteratively solving subproblems. We have validated our
approach through extensive simulations, demonstrating that
our method improves energy efficiency and model accuracy
compared to existing methods. In future work, we aim to
incorporate drone mobility to enhance system adaptability in
dynamic environments for real-world applications.
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