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Resource Allocation for Federated Knowledge

Distillation Learning in Internet of Drones
Jingjing Yao , Member, IEEE, Semih Cal, and Xiang Sun , Member, IEEE

Abstract—The Internet of Drones (IoD) integrates drone
technology with the Internet of Things, enabling efficient data col-
lection and communication applications. Federated learning (FL)
in IoD networks facilitates collaborative model training while
preserving data privacy but imposes significant computational
and communication demands on resource-constrained drones.
Federated knowledge distillation learning (FedKD) addresses
this challenge by training both a large teacher model and a
smaller student model locally but only updating the smaller
student model, thereby reducing communication overhead. This
article tackles the resource allocation problem in FedKD within
IoD networks, focusing on optimizing CPU computing resource,
wireless transmission power, and bandwidth allocation to min-
imize overall drone energy consumption. We formulate this as
an optimization problem, considering constraints on latency,
computing resource, bandwidth, and power. To effectively address
this problem, we design a low-complexity algorithm. Extensive
simulations validate our approach, showing it reduces energy
consumption by an average of 85% compared to FedKD and
94% compared to FedAvg (a standard FL algorithm).

Index Terms—Bandwidth allocation, CPU control, federated
knowledge distillation learning (FedKD), federated learning (FL),
Internet of drones (IoD), Internet of Things (IoT), power control,
resource allocation.

I. INTRODUCTION

W
ITH the development of emerging applications, such

as smart cities, smart homes, smart industries, and

healthcare, the number of Internet of Things (IoT) devices

has increased explosively [1] and is expected to exceed 75

billion by 2025 [2]. The Internet of Drones (IoD), where

drones act as IoT devices, has gained significant attention due

to its high mobility and flexibility. IoD is widely applied in

traffic monitoring, disaster management, precision agriculture,

and more [3]. Modern IoD applications often require the

integration of machine learning (ML) techniques to enable

autonomous decision-making, pattern recognition, and real-

time data analysis. Typically, centralized ML is applied in
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these scenarios, where large volumes of data collected by

drones are transmitted to a remote cloud for processing and

analysis. However, centralized ML poses privacy risks, as

sensitive data from drones must be transmitted over potentially

insecure wireless networks [4].

Compared to traditional centralized ML, federated learning

(FL) is an emerging distributed approach that addresses pri-

vacy concerns by avoiding raw data transmission [5]. In IoD

networks, FL allows multiple drones to collaboratively train

a global model without sharing private data [6]. Instead, each

drone keeps its data locally and transmits only the parameters

of its trained model. In the standard FL process, known as

FedAvg [7], the global model is sent to all drones at each

iteration. Drones then update their local models with private

data and upload the new parameters to a ground base station

(BS). The BS aggregates these parameters to refine the global

model and redistributes it to the drones. This iterative process

of local training, parameter aggregation, and global updating

continues until the desired model accuracy is achieved.

While FL offers a promising framework for privacy

preservation, its implementation in IoD networks poses

significant challenges, especially in resource-constrained envi-

ronments [8]. One challenge is the size of modern deep

learning models, which often contain billions or trillions

of parameters [9], [10]. Transmitting these large parameters

creates significant communication overhead, making it difficult

for wireless networks with limited bandwidth to manage.

Another challenge is the increased battery consumption caused

by frequent parameter exchanges, which is problematic for

drones with limited battery capacity, reducing the overall

efficiency of FL in IoD networks.

Federated knowledge distillation (FedKD) [11] is a promis-

ing approach that integrates knowledge distillation (KD) [12]

with FL to enhance the efficiency of distributed learning. In

FedKD, both a large teacher model and a smaller student

model are trained collaboratively on drones. The student

model, designed to mimic the performance of the larger

teacher model, captures essential knowledge without requiring

the full complexity of the original model [13]. Crucially, only

the lightweight student model is transmitted to the BS for

aggregation, minimizing communication overhead. Therefore,

FedKD mitigates the issue of transmitting large model parame-

ters by limiting communication to the smaller student models,

and also reduces the size of data exchanges, conserving drone

battery life [14].

Investigating the resource allocation problem in FedKD

is crucial due to the inherent constraints and challenges in
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IoD networks. One of the primary challenges is the limited

computational capacity of drones, which necessitates efficient

use of CPU computing resources for training both teacher

and student models. It is important to carefully allocate CPU

resources to ensure that both models can be trained effectively.

Another challenge is the limited battery life of drones, which

impacts their ability to continuously perform computational

tasks and communicate with the BS. To address this, it is

essential to design wireless power allocation strategies that

optimize power usage across different drones. Additionally, the

constrained communication bandwidth in IoD networks poses

a challenge for transmitting model parameters. To mitigate

this, it is crucial to allocate wireless bandwidth efficiently.

Based on the above analysis, we investigate the resource

allocation problem for FedKD in IoD networks. Specifically,

we jointly optimize CPU computing resource allocation, wire-

less power allocation, and wireless bandwidth allocation to

minimize the energy consumption of all drones while adhering

to constraints on CPU computing resource, training time,

and bandwidth. The major contribution of this work can be

summarized as follows.

1) We investigate the resource allocation problem in

FedKD within resource-constrained IoD networks, opti-

mizing the use of limited computing and communication

resources.

2) We formulate the joint optimization of CPU comput-

ing resource allocation, wireless power allocation, and

bandwidth allocation with the objective of minimizing

the energy consumption of all drones while satisfying

constraints on computing resource, training time, band-

width, and power.

3) We design an alternative algorithm to address the

problem by iteratively solving two subproblems:

a) jointly optimizing CPU resource allocation and global

iteration time and b) jointly optimizing wireless power

and bandwidth. The process repeats until convergence.

4) Extensive simulations validate the effectiveness of our

approach, showing improved performance on energy

consumption and model accuracy. The results demon-

strate that our algorithm reduces energy consumption

while maintaining high accuracy, outperforming existing

methods.

The remainder of this article is organized as follows.

In Section II, we review the existing literature. Section III

presents our system model and analyzes the drone energy

model. In Section IV, we formulate our joint optimization

problem to optimize CPU computing resource, wireless trans-

mission power, and bandwidth allocation in FedKD within

IoD networks. Section V elaborates on our designed algorithm

to effectively address this problem. The performance of our

algorithm is demonstrated and analyzed through simulation

results in Section VI. Finally, we conclude this article in

Section VII.

II. RELATED WORKS

Several researchers have conducted studies on IoD

networks. Abualigah et al. [15] provided a comprehensive

survey of IoD applications and the integration of IoD with

technologies, such as neural networks, blockchain, and privacy

protection. Shirabayashi and Ruiz [16] reviewed the litera-

ture on UAV path planning optimization, comparing various

mathematical models and techniques, and highlighting the

advantages, safety, and potential for integration with IoD

networks. Grieco et al. [17] designed an open-source tool for

IoD simulation called IoD-Sim, based on ns-3. It features

a three-layer stack: 1) the underlying telecommunications

platform; 2) the core for fundamental IoD scenario features;

and 3) a simulation development platform for graphical

design of use cases. Yao and Ansari [18] investigated the

joint optimization of power control and energy harvest-

ing in time-varying IoD networks by deep reinforcement

learning.

Resource allocation in FL has been studied in various

research. Yang et al. [19] tackled an optimization problem to

minimize total energy consumption during the FL process by

considering both local computation and transmission energy

under a latency constraint. Mo and Xu [20] enhanced system

energy efficiency in FL by jointly optimizing communication

resource allocation for global ML-parameters aggregation

and computation resource allocation for local ML-parameter

updates. Chen et al. [21] explored communication-efficient FL

over wireless IoT networks with limited resources, formulating

a joint optimization problem for client scheduling and resource

allocation while considering bandwidth and power constraints.

Yao and Ansari [22] investigated the joint optimization of CPU

frequency control and wireless transmission power control for

all IoT devices in fog-aided IoT networks. Their study aimed

to balance the tradeoff between device energy consumption

and FL time.

Resource allocation in FL within IoD networks has been

investigated in various research studies. Zhang et al. [23]

proposed a semi-supervised FL framework to address

data privacy and availability challenges in IoD networks.

Shvetsov et al. [24] introduced a novel framework that inte-

grates intelligent reflecting surfaces (IRS) and FL with drones

to enhance 6G communication networks, improving coverage,

reliability, and energy efficiency through smart signal reflec-

tion and collaborative learning. Shen et al. [25] minimized the

overall training energy consumption of FL in IoD networks

by jointly optimizing the local convergence threshold, local

iterations, computation resource allocation, and bandwidth

allocation while ensuring FL global accuracy and adhering to

maximum training latency constraints. Yao and Ansari [26]

focused on the power control of all drones to maximize the FL

system security rate, taking into account drone battery capaci-

ties and FL latency requirements. Pham et al. [27] proposed an

energy-efficient FL algorithm that optimizes UAV placement,

power control, transmission time, model accuracy, bandwidth

allocation, and computing resources to minimize total energy

consumption for aerial servers and users. Wang et al. [28]

developed a two-tier hierarchical FL scheme assisted by a UAV

swarm, where UAVs offload their data to the BS during the

local training phase and act as relays to assist the parameter

server and local clients in forwarding ML models during the

remaining time.
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Fig. 1. FedKD in IoD networks.

KD was introduced by Hinton et al. [12], and it has

gained attention as a method for accelerating learning by

transferring knowledge from a teacher model to a student

model. Li and Wang [29] were among the first to leverage KD

in FL. Wu et al. [11] proposed the FedKD framework, which

is based on adaptive mutual KD. This framework trains both

a large model and a small model on the client side, trans-

mitting only the smaller student model to the server, thereby

reducing communication overhead while improving accuracy.

Wen et al. [30] introduced Fed2KD, a communication-efficient

FL framework that employs a novel KD scheme with an

attention mechanism and metric learning. Chen et al. [31]

designed a KD-based FL optimization problem that accounts

for dynamic local resources. Gad et al. [32] explored path

optimization and transmission organization algorithms to min-

imize flight time and extend the range of UAVs, using

self-organizing maps for path planning and KD-based FL to

reduce communication overhead.

Our recent work [33] investigated CPU computing resource

optimization in FedKD within IoD networks. However, to the

best of our knowledge, no research has addressed the joint

optimization of CPU computing resource, wireless transmis-

sion power, and bandwidth allocation in the FedKD framework

for IoD networks. To fill this gap, we investigate the resource

allocation problem, aiming to minimize the energy consump-

tion of all drones while considering constraints on latency,

computing resource, power, and bandwidth.

III. SYSTEM MODEL

In our system model, as shown in Fig. 1, there are K drones

(indexed by set K = {1, 2, . . . , K}) deployed in the air. These

drones collaborate with a ground BS to train a global ML

model for applications, such as object recognition and traffic

monitoring. The communication between the UAVs and the BS

follows frequency division multiple access (FDMA) protocol,

where the available bandwidth is divided into frequency

bands, and each UAV is allocated a specific band for data

transmission. In the FedKD framework, each drone contains

a dual-model architecture including a larger, more complex

teacher model, and a smaller, more efficient student model.

The teacher model generates high-quality predictions and

guides the training of the student model. To train this dual-

model, an adaptive mutual distillation loss that combines both

the loss from the teacher model and the loss from the student

model is minimized. The parameters of the smaller student

models from the drones are shared with the BS for aggregation

to ensure system efficiency. The specific process of FedKD in

IoD networks operates through a series of global iterations.

In each global iteration, the BS broadcasts the current global

ML model to all drones. Each drone then trains its dual-model

locally and updates the parameters through multiple local

iterations. After completing local training, only the student

model parameters are sent back to the BS for aggregation. This

process of global iterations is repeated until a desired level

of accuracy is achieved or the maximum number of global

iterations is reached.

A. FedKD Training Time

In each global iteration, each drone’s FedKD training time

consists of the local computation time for updating dual-

model parameters and the wireless data transmission time

for uploading the student model parameters. Note that the

broadcasting time from the BS to drones is typically much

smaller than the local training and parameter transmission

time, so we neglect it in our work [34]. For drone k, the local

computation time for the teacher model is ttak = (Cta
k Dk/f ta

k ),

and for the student model, it is tstu
k = (Cstu

k Dk/f stu
k ). Here,

Cta
k and Cstu

k are the numbers of CPU cycles required to

train a data sample in one local iteration for the teacher

and student models, respectively. f ta
k and f stu

k are the CPU

frequencies of the teacher and student models, respectively,

and Dk is the number of data samples in the dataset. Since the

teacher and student models are trained simultaneously during

the local training process, the total local computation time t
cmp

k

is determined by the longer of ttak and tstu
k

t
cmp

k = Ik max
{

ttak , tstu
k

}

= Ik max

{

Cta
k Dk

f ta
k

,
Cstu

k Dk

f stu
k

}

(1)

where Ik is the number of local iterations.

The wireless data transmission time is influenced by

the wireless channel between the BS and the drones. We

adopt the widely accepted drone communication model [35],

which assumes that the wireless channel between the BS

and drones follows a probability model that can be either

line-of-sight (LoS) or non-LoS (NLoS). The probabili-

ties of being LoS and NLoS are given by Pr(LoS) =

(1/[1 + α exp(−β[(180/π)θ − α])]) and Pr(NLoS) = 1 −

Pr(LoS), respectively, where α and β are environment-

related constants (e.g., rural or urban areas), and θ is the

elevation angle as shown in Fig. 1. The LoS and NLoS

path loss models follow the free space propagation loss

model, given by PL(LoS) = 20 log10(4π fcd/c) + ξLoS and

PL(NLoS) = 20 log10(4π fcd/c)+ξNLoS, where ξLoS and ξNLoS

are environment-related constants, fc is the carrier frequency,

c is the speed of light, and d is the distance between a drone

and the BS. The average path loss can be calculated as PL =
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Pr(LoS) · PLLoS + Pr(NLoS) · PLNLoS, and thus the wireless

channel gain between a drone and the BS is G = 10−(PL/10).

According to the Shannon equation, the data transmission

rate from drone k to the BS is given by rk = Bk log2(1 +

[pkGk/N0Bk]), where Bk is the bandwidth allocated to drone

k, pk is its wireless transmission power, Gk is the wireless

channel gain, and N0 is the noise power spectral density.

Consequently, the wireless parameter transmission time for

drone k is

tcom
k =

sk

rk

(2)

where sk is the data size of the student model. In summary,

the FedKD training time for drone k in one global iteration is

tk = t
cmp

k + tcom
k . (3)

B. FedKD Energy Consumption

The energy consumption of a drone arises from performing

local model training and wireless data transmission. We

assume that the drone’s mobility and FedKD operations are

powered separately by the drone’s motor battery and the

battery associated with the computing board, respectively.

Therefore, we focus solely on the energy consumption related

to FedKD operations in our work.

The energy for local computation is consumed by training

both the teacher and student models. The energy consump-

tion for processing a CPU cycle of the teacher model is

κ(f ta
k )2, where κ represents the switch capacitance-related

constant [36]. Thus, the energy consumption for training the

teacher model in one local iteration is Eta
k = κCta

k Dk(f
ta
k )2,

where Cta
k is the required CPU cycles per data sample for the

teacher model and Dk is the number of data samples. Similarly,

the energy consumption for training the student model in one

local iteration is Estu
k = κCstu

k Dk(f
stu
k )2, where Cstu

k is the

required CPU cycles per data sample for the student model.

Therefore, the total energy consumed in local computation for

drone k is

E
cmp

k = Ik

(

Eta
k + Estu

k

)

= Ik

[

κCta
k Dk

(

f ta
k

)2
+ κCstu

k Dk

(

f stu
k

)2
]

. (4)

The energy consumption of wireless data transmission for

uploading student model can be calculated as

Ecom
k = pktcom

k =
pksk

rk

. (5)

In summary, the energy consumption of drone k in a global

iteration is

Ek = E
cmp

k + Ecom
k . (6)

IV. PROBLEM FORMULATION

In this section, we formulate the resource allocation problem

for optimizing CPU computing resources, wireless transmis-

sion power, and wireless bandwidth in FedKD within IoD

networks. The objective is to minimize the total energy

consumption of all drones while considering constraints on

training time, CPU computing resource, wireless power,

and wireless bandwidth. The problem can be formulated as

follows:

P0: min
f ta
k ,f stu

k ,bk,pk,τ

K
∑

k=1

§

¨

©

Ik

[

κCta
k Dk

(

f ta
k

)2
+ κCstu

k Dk

(

f stu
k

)2
]

+
skpk

bk log2

(

1 +
pkGk

N0bk

)

«

¬

­

s.t. f min
k ≤ f ta

k + f stu
k ≤ f max

k ∀k ∈ K (7)

Ikmax

{

Cta
k Dk

f ta
k

,
Cstu

k Dk

f stu
k

}

+
sk

bk log2

(

1 +
pkGk

N0bk

) ≤ τ ∀k ∈ K (8)

K
∑

k=1

bk ≤ B (9)

pmin
k ≤ pk ≤ pmax

k ∀k ∈ K. (10)

The objective of problem P0 is to minimize the total energy

consumption of all drones, including energy used for both

local computation and wireless data transmission, as defined

in (6). Constraint (7) ensures that the total CPU computing

resources allocated for training both the teacher model and

the student model on each drone k remain within the physical

and operational limits of the drone’s computational capacity.

Specifically, the sum of the CPU frequencies allocated to

the teacher model f ta
k and the student model f stu

k should lie

between a predefined minimum f min
k and maximum f max

k .

These bounds represent the operational range of the drone’s

CPU, where f min
k corresponds to the minimum frequency

required to ensure efficient operation, and f max
k corresponds to

the maximum frequency that the drone hardware can support

without risking overheating or excessive power consumption.

In each global iteration of FedKD, all drones transmit their

parameters to the BS for aggregation. The BS should receive

the parameters from all drones before performing the aggre-

gation. Therefore, the total time tk required for computation

and communication of each drone in one global iteration

should be within the global iteration time τ , as specified

in (8). Constraint (9) imposes a bandwidth allocation limit,

requiring the total bandwidth assigned to all drones to stay

within the available bandwidth B. Constraint (10) ensures that

each drone’s wireless transmission power remains within the

allowed range, bounded by pmin
k and pmax

k . The lower bound

pmin
k ensures the drone has sufficient power to maintain reliable

communication with the BS, overcoming channel noise and

path loss. The upper bound pmax
k limits the power to prevent

hardware damage.

It is important to note that obtaining the solution to problem

P0 is challenging due to its nonconvex nature, which makes

it difficult to solve using standard optimization techniques.

To address this, we design a low-complexity algorithm that

efficiently finds a solution by breaking down the problem into

more manageable subproblems in next section.
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V. ALGORITHM DESIGN

To address the complex problem P0, we propose an alter-

nating iteration method to optimize 〈f ta
k , f stu

k , τ 〉 and 〈bk, pk〉

in turn. In this method, we first solve the subproblem of

optimizing f ta
k , f stu

k , and τ while keeping bk and pk fixed. Next,

we address the subproblem of optimizing bk and pk while

keeping f ta
k , f stu

k , and τ fixed. These two steps are repeated

iteratively until the objective value of problem P0 converges

to a stable solution or the maximum number of iterations is

reached.

A. Joint Optimization of CPU Frequency and Global

Iteration Time

In this subproblem, we fix the wireless bandwidth and power

〈bk, pk〉 as 〈b∗
k , p∗

k〉 that satisfy (9) and (10). Then, problem

P0 becomes a joint optimization of CPU frequency and global

iteration time

P1: min
f ta
k ,f stu

k ,τ

K
∑

k=1

Ik

[

κCta
k Dk

(

f ta
k

)2
+ κCstu

k Dk

(

f stu
k

)2
]

s.t. (9)

Ikmax

{

Cta
k Dk

f ta
k

,
Cstu

k Dk

f stu
k

}

+
sk

b∗
k log2

(

1 +
p∗

k Gk

N0b∗
k

) ≤ τ

∀k ∈ K. (11)

Note that the item (skp∗
k/[b∗

k log2(1 + [p∗
kGk/N0b∗

k ])]) in the

objective function of problem P0 is removed because it is a

constant and does not affect the solution of the problem.

The difficulty in addressing problem P1 lies in the global

iteration time τ in (11), as it couples f ta
k and f stu

k for

different drones. In other words, problem P1 is straight-

forward to solve without (11) by decomposing it into K

independent subproblems and addressing each subproblem

separately. Since drones upload their parameters to the BS

simultaneously, the global iteration time depends on the

slowest drone, which has the longest FedKD training time.

Motivated by this analysis, we enumerate τ as the FedKD

training time for each drone, considering each drone as

the potential slowest one. We assume drone j is the slow-

est, thus τ = τj = Ijmax{(Cta
j Dj/f ta

j ), (Cstu
j Dj/f stu

j )} +

(sj/[b∗
j log2(1 + [p∗

j Gj/N0b∗
j ])]). Then, problem P1 can be

transformed into two cases: one for k = j and another for

k 	= j.

For the case when k = j, problem P1 becomes

P1-1: min
f ta
j ,f stu

j ,τj

Ij

[

κCta
j Dj

(

f ta
j

)2
+ κCstu

j Dj

(

f stu
j

)2
]

s.t. f min
j ≤ f ta

j + f stu
j ≤ f max

j (12)

Ijmax

{

Cta
j Dj

f ta
j

,
Cstu

j Dj

f stu
j

}

+
sj

b∗
j log2

(

1 +
p∗

j Gj

N0b∗
j

)
= τj

(13)

where we can get the specific value of τj so it can then be

considered a constant.

For the case when k 	= j, problem P1 can be separated into

following subproblems:

P1-2: min
f ta
k ,f stu

k

K
∑

k=1

Ik

[

κCta
k Dk

(

f ta
k

)2
+ κCstu

k Dk

(

f stu
k

)2
]

s.t. f min
k ≤ f ta

k + f stu
k ≤ f max

k ∀k ∈ K \ j (14)

Ikmax

{

Cta
k Dk

f ta
k

,
Cstu

k Dk

f stu
k

}

+
sk

b∗
k log2

(

1 +
p∗

k Gk

N0b∗
k

) ≤ τj ∀k ∈ K \ j. (15)

It can be observed that the objective function of problem

P1-1 is an increasing function with regard to f ta
j and f stu

j .

Hence, we can set f ta
j + f stu

j = f min
j to minimize the objective

function. We then substitute f stu
j = f min

j − f ta
j into the objective

function, which becomes H(f ta
j ) = Ijκ[Cta

j (f ta
j )2 + Cstu

j (f min
j −

f ta
j )2]Dj. To minimize the objective function H(f ta

j ), we take

the first derivative and set it to zero. So, we have H′(f ta
j ) =

Ijκ[2Cta
j f ta

j −2Cstu
j (f min

j − f ta
j )]Dj = 0. Therefore, the optimum

solution of f ta
j can be calculated as

f ta
j

∗
=

cstu
j f min

j

cta
j + cstu

j

(16)

and the optimum solution of f stu
j is

f stu
j

∗
=

cta
j f min

j

cta
j + cstu

j

. (17)

The global iteration time τj can then be calculated as

τj = Ijmax

{

Cta
j Dj

f ta
j

∗ ,
Cstu

j Dj

f stu
j

∗

}

+
sj

b∗
j log2

(

1 +
p∗

j Gj

N0b∗
j

)
. (18)

Problem P1-2 is a convex problem and so we

address it by solving the Karush–Kuhn–Tucker (KKT)

conditions. (15) is equivalent to Ik(C
ta
k Dk/f ta

k ) +

(sk/[b∗
k log2(1 + [p∗

kGk/N0b∗
k ])]) ≤ τj and Ik(C

stu
k Dk/f stu

k ) +

(sk/[b∗
k log2(1 + [p∗

kGk/N0b∗
k ])]) ≤ τj. Hence, we have

f ta
k ≥

IkCta
k Dk

τj − sk

b∗
k log2

(

1+
p∗
k

Gk

N0b∗
k

)

(19)

and

f stu
k ≥

IkCstu
k Dk

τj − sk

b∗
k log2

(

1+
p∗
k

Gk

N0b∗
k

)

. (20)

The Lagrangian function of the objective in problem P1-2 is

L(f ta
k , f stu

k , u, v) = Ikκ[Cta
k (f ta

k )2 + Cstu
k (f stu

k )2]Dk + u(f min
k −

f ta
k − f stu

k ) + v(f ta
k + f stu

k − f max
k ). The KKT conditions are as

follows:

∂L

∂f ta
k

= 2IkκCta
k f ta

k Dk − u + v = 0 (21)

∂L

∂f stu
k

= 2IkκCstu
k f stu

k Dk − u + v = 0 (22)
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u
[

f min
k − f ta

k − f stu
k

]

= 0 (23)

v
[

f ta
k + f stu

k − f max
k

]

= 0 (24)

u ≥ 0, v ≥ 0. (25)

Based on (21) and (25), we can conclude u > 0. By

substituting it to (23), we have f min
k − f ta

k − f stu
k = 0, and

so f ta
k + f stu

k − f max
k 	= 0. Hence, we have v = 0 based

on (24). Combining v = 0 with (21) and (22), we obtain

2IkκCta
k f ta

k Dk = 2IkκCstu
k f stu

k Dk. Therefore, the solution of the

KKT conditions is f ta
k = (Cstu

k f min
k /[Cta

k + Cstu
k ]) and f stu

k =

(Cta
k f min

k /[Cta
k + Cstu

k ]). Combining this with (19) and (20), the

solution of problem P1-2 is

f ta
k = max

§

⎪

⎪

¨

⎪

⎪

©

Cstu
k f min

k

Cta
k + Cstu

k

,
IkCta

k Dk

τj − sk

b∗
k log2

(

1+
p∗
k

Gk

N0b∗
k

)

«

⎪

⎪

¬

⎪

⎪

­

(26)

and

f stu
k = max

§

⎪

⎪

¨

⎪

⎪

©

Cta
k f min

k

Cta
k + Cstu

k

,
IkCstu

k Dk

τj − sk

b∗
k log2

(

1+
p∗
k

Gk

N0b∗
k

)

«

⎪

⎪

¬

⎪

⎪

­

. (27)

To obtain the optimal solution for problem P1, we choose

the best result generated by enumerating all possible slowest

drones j ∈ K. Specifically, for each candidate slowest drone j,

we first solve problem P1-1 and then problem P1-2. We record

the possible objective value and the corresponding f ta
k , f stu

k , and

τj. After completing all enumerations, we select the best f ta
k ,

f stu
k , and τj that yield the minimum objective value as our final

solution. The process for addressing problem P1 is outlined

in Algorithm 1. lines 1–3 initialize the candidate vector of

possible objective values for each enumeration. Lines 4–12

enumerate each possible slowest drone. Line 5 calculates the

CPU frequencies of the slowest drone, and line 6 calculates the

global iteration time. Lines 7–9 determine the CPU frequencies

for all other drones. Lines 10 and 11 store the possible

objective value. Finally, lines 13 and 14 select the best solution

among all possible objective values. Lines 1–3 execute in

O(K) time. The loop in lines 7–9 has a time complexity

of O(K), making the overall complexity of the loop from

Lines 4–12 equal to O(K2). lines 13 and 14 run in constant

time O(1). Therefore, the total computational complexity of

Algorithm 1 is O(K2).

B. Joint Optimization of Wireless Power and Bandwidth

Allocation

In this subproblem, we fix 〈f ta
k , f stu

k , τ 〉 as 〈f ta
k

∗
, f stu

k
∗
, τ ∗〉,

and the problem P0 becomes

P2: min
bk,pk

K
∑

k=1

skpk

bk log2

(

1 +
pkGk

N0bk

)

s.t. (9), (10)

Ikmax

{

Cta
k Dk

f ta
k

∗ ,
Cstu

k Dk

f stu
k

∗

}

Algorithm 1: Algorithm for Joint Optimization of CPU

Frequency and Global Iteration Time

1 for each j ∈ K do

2 Initialize candidate vector V[j] = 0 ;

3 end

4 for each j ∈ K do

5 Calculate drone j’s CPU frequencies f ta
j and f stu

j

according to (16) and (17) ;

6 Calculate the global iteration time τ according to

(18) ;

7 for each k ∈ K \ j do

8 Calculate drone k’s CPU frequencies f ta
k and f stu

k

according to (26) and (27) ;

9 end

10 Calculate the objective value R of problem P1 ;

11 Assign V[j] = R and record corresponding f ta
k and

f stu
k ;

12 end

13 Choose j that achieves the minimum V[j] ;

14 Select the corresponding f ta
k and f stu

k as the optimum

solution of problem P1 ;

+
sk

bk log2

(

1 +
pkGk

N0bk

) ≤ τ ∗ ∀k ∈ K. (28)

Note that the item Ik[κCta
k Dk(f

ta
k

∗
)2 + κCstu

k Dk(f
stu
k

∗
)2] is

removed in the objective for simplicity because it is a constant

and does not affect the optimal solution. It is challenging to

address problem P2 because of its nonconvexity, so we intro-

duce another variable tk = (sk/[bk log2(1 + [pkGk/N0bk])]) to

simplify this problem. Then, problem P2 becomes

P3: min
bk,pk,tk

K
∑

k=1

pktk

s.t. (9), (10)

tk ≤ τ ∗ − Ikmax

{

Cta
k Dk

f ta∗
k

,
Cstu

k Dk

f stu∗
k

}

∀k ∈ K (29)

tkbk log2

(

1 +
pkGk

N0bk

)

= sk ∀k ∈ K. (30)

It is still challenging to solve problem P3. Therefore, we

design an iterative method to address it. In this method, we

first fix tk and then use the obtained values of bk and pk to

update tk. We repeat this process until the objective value of

problem P3 converges to a stable value.

We first fix tk as t∗k that satisfies (29). Then, problem P3

can be transformed into

P3-1: min
bk,pk

K
∑

k=1

pkt∗k

s.t. (9), (10)

t∗k bk log2

(

1 +
pkGk

N0bk

)

= sk ∀k ∈ K. (31)
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Equation (31) is equivalent to pk = (N0bk/Gk)(2
(sk/t∗k bk) − 1).

By substituting it into problem P3-1, we have

P3-2: min
bk

K
∑

k=1

N0bk

Gk

(

2

sk

tb
k

bk − 1

)

t∗k

s.t. (9)

pmin
k ≤

N0bk

Gk

(

2

sk
t∗
k

bk − 1

)

≤ pmax
k ∀k ∈ K. (32)

Lemma 1: Problem P3-2 is a convex optimization problem.

Proof: To demonstrate the convexity of problem P3-2,

we obtain the first derivative of the objective function g(bk) =
∑K

k=1 pkt∗k =
∑K

k=1 (N0bk/Gk)(2
(sk/tkkbk) − 1)t∗k is

g′(bk) = t∗k
∂pk

∂bk

=
N0t∗k

Gk

(

2

sk
t∗
k

bk − 1 −
sk ln 2

t∗k bk

2

sk
t∗
k

bk

)

=

(

N0t∗k

Gk

−
N0sk ln 2

Gkbk

)

2

sk
t∗
k

bk −
N0t∗k

Gk

. (33)

The second derivative is

g′′(bk) = t∗k
∂pk

∂2bk

=
N0s2

k(ln 2)2

Gkt∗k b3
k

2

sk
t∗
k

bk > 0. (34)

Therefore, the objective function is a convex function and pk

is a convex function with regard to bk. (32) is hence a convex

set. Additionally, (9) is a convex set. In summary, problem

P3-2 is a convex optimization problem.

Because we have the second derivative g′′(bk) =

(∂pk/∂
2bk) > 0, g′(bk) = (∂pk/∂bk) is an increasing function.

Note that (∂pk/∂
2bk) → 0 when bk → ∞. Hence, we have

(∂pk/∂bk) < 0, and so pk is a decreasing function with regard

to bk. Let bmin
k and bmax

k be the minimum and maximum values

of bk, respectively. Then, we have

pmin
k =

N0bmax
k

Gk

(

2

sk
t∗
k

bmax
k − 1

)

(35)

and

pmax
k =

N0bmin
k

Gk

(

2

sk

t∗
k

bmin
k − 1

)

. (36)

Therefore, (32) is equivalent to

bmin
k ≤ bk ≤ bmax

k ∀k ∈ K. (37)

Since problem P3-2 is a convex problem, we can

obtain its solution by solving its KKT conditions. The

Lagrangian function of the objective function is L(bk, λ) =
∑K

k=1 (N0bk/Gk)(2
(sk/t∗k bk) −1)t∗k +λ(

∑K
k=1 bk −B). The KKT

conditions include

∂L(bk, λ)

∂bk

=

(

N0t∗k

Gk

−
N0sk ln 2

Gkbk

)

2

sk

tk
k

bk −
N0t∗k

Gk

+ λ = 0

(38)

λ

(

K
∑

k=1

bk − B

)

= 0 (39)

λ ≥ 0 (40)

bmin
k ≤ bk ≤ bmax

k ∀k ∈ K. (41)

Based on (38), we have g′(bk) + λ = 0. Since g′(bk) < 0, we

have λ > 0. Substituting it into (39), we then have

K
∑

k=1

bk − B = 0. (42)

Assume b̃k and λ̃ is the solution of the set of equations

from (38) and (42). Combining these with (37), the solution

of problem P3-2 can be calculated as

b∗
k =

§

¨

©

bmin
k , if b̃k ≤ bmin

k

bmax
k , if b̃k ≥ bmax

k

b̃k, otherwise.

(43)

Based on (31), we have p∗
k = (N0b∗

k/Gk)(2
(sk/t∗k b∗

k ) − 1). After

that, we can update the value of t∗k according to

t∗k =
sk

b∗
k log2

(

1 +
p∗

k Gk

N0b∗
k

) . (44)

Then, we repeat the process of addressing problem P3-2 and

updating t∗k until the objective value of problem P3 converges.

The process of addressing problem P3 is outlined in

Algorithm 2. Lines 1–3 initialize the auxiliary variable, the

iteration number, and the maximum iteration number I1. Lines

4–14 iteratively calculate the wireless power and bandwidth

and update the auxiliary variable. Specifically, lines 7–9

compute each drone’s bandwidth, line 10 determines each

drone’s wireless transmission power, and line 11 updates the

auxiliary variable. The while loop in lines 4–14 runs I1 times

in the worst case scenario. Within each iteration, lines 6–12

execute K times. Specifically, line 8 involves solving a system

of equations by solvers, often with Newton’s method, which

has a time complexity of O(K2 · I), where I is the number

of iterations required for convergence [37]. Thus, the total

computational complexity of Algorithm 2 is O(I1 · K3 · I).

In summary, our proposed algorithm for addressing the

resource allocation problem P0 involves iteratively optimizing

two components: 1) the joint optimization of CPU frequency

and 2) global iteration time using Algorithm 1, and the joint

optimization of wireless power and bandwidth allocation using

Algorithm 2. This iterative process continues until convergence

or the maximum number of iterations is reached. The com-

plete process of our proposed algorithm, Federated KD with

optimized CPU frequency, wireless transmission power, and

bandwidth (FedKD-FPB), is outlined in Algorithm 3. Lines

1–4 initialize the wireless power, bandwidth, iteration number,

and maximum number of iterations I2. Lines 6–9 alternatively

calculate the two subproblems. The while loop in lines 5–10

runs I2 times in the worst case scenario. Line 7 executes in

O(K2) time from Algorithm 1, and line 8 has a complexity of

O(I1 ·K3 ·I) from Algorithm 2. Thus, the overall computational

complexity of the proposed FedKD-FPB algorithm is O(I2 ·

(K2 + I1 · K3 · I)) = O(I2 · I1 · K3 · I), which is in polynomial

time.

VI. PERFORMANCE EVALUATION

In this section, we set up simulations to evaluate our

proposed algorithm FedKD-FPB. The simulations are con-

ducted on a high-performance Dell tower station equipped
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Algorithm 2: Algorithm for Joint Optimization of

Wireless Power and Bandwidth Allocation

1 Initialize tk = t∗k ;

2 Initialize iteration number i = 0;

3 Initialize maximum iteration number I1;

4 while Objective of P3 does not converge and i ≤ I1 do

5 i = i + 1;

6 for each k ∈ K do

7 Calculate drone k’s minimum and maximum

bandwidth bmin
k and bmax

k according to (35) and

(36);

8 Calculate drone k’s bandwidth b̃k by solving (38)

and (42);

9 Calculate drone k’s bandwidth b∗
k according to

(43);

10 Calculate drone k’s wireless transmission power

p∗
k according to (31);

11 Update t∗k according to (44);

12 end

13 Calculate the objective value of P3;

14 end

Algorithm 3: FedKD-FPB Algorithm

1 Initialize wireless power pk = p∗
k ;

2 Initialize wireless bandwidth bk = b∗
k ;

3 Initialize iteration number i = 0 ;

4 Initialize maximum iteration number I2 ;

5 while Objective of P0 does not converge and i ≤ I2 do

6 i = i + 1;

7 Calculate CPU frequency f ∗
k of all drones and global

iteration time τ ∗ according to Algorithm 1;

8 Calculate wireless power p∗
k and bandwidth b∗

k of all

drones according to Algorithm 2 ;

9 Calculate the objective value of P0;

10 end

with an Intel Xeon W-2245 CPU running at 3.90 GHz across

16 cores, an NVIDIA Quadro RTX 6000/8000 GPU, and

128 GB of RAM. For comparison, we utilize five existing

algorithms. The FedKD algorithm [11] is a federated KD

framework without any resource optimization. The FedKD-

F algorithm [33] optimizes the CPU frequencies of teacher

and student models within the FedKD framework. The FedAvg

algorithm [7] represents the original FedAvg approach, using

a single model for local training. The FedAvg-F algorithm

optimizes CPU frequency within the FedAvg framework.

Lastly, the FedAvg-PB algorithm [21] includes optimizations

for wireless transmission power and bandwidth allocation

within the FedAvg framework.

In our simulation, we have K = 30 drones hovering at

a height of H = 100 m above a square region measuring

1000 × 1000 m. The BS is located at the center of this

region, with drones uniformly distributed across the area.

For the drone wireless channel, the environmental parameters

α and β are set to 9.6 and 0.28, respectively. The speed

Fig. 2. Energy consumption versus number of drones.

of light c is 3 × 108 m/s, and the carrier frequency fc is

2 GHz. The environment-related parameters ξLoS and ξNLoS

are 1 and 20 dB, respectively. The noise power density N0

is set to −114 dBm/Hz. The CPU switched capacitance κ

is 10−28. The minimum CPU frequency of each drone f min
k

is randomly selected from U(0.2, 1) × 10 GHz, while the

maximum CPU frequency f max
k is randomly selected from

U(2.2, 3) ×10 GHz. The total bandwidth B is set to 20 MHz.

The minimum and maximum wireless transmission powers

pmin
k and pmax

k are 0.1 and 1 W, respectively. For implementing

the FedKD framework, the teacher model consists of three

convolutional layers and one linear layer, while the student

model comprises two convolutional layers and one linear layer.

These models are trained using the MNIST dataset [38].

Each drone has Dk = 1100 data samples. The required CPU

cycles for the teacher model Cta
k are randomly chosen from

2 × 105 to 4 × 105, and the student model’s Cstu
k is one-

third of Cta
k . The student model size sk is 28.1 Mb. The

number of local iterations Ik is set to 1. The above parameters

are consistent with [34], [35], [39]. Note that these values

are default settings and may be adjusted to investigate their

impacts on performance.

Fig. 2 compares the energy consumption performance

across varying numbers of drones, ranging from 20 to 40. We

observe that as the number of drones increases, the energy con-

sumption of all algorithms also rises. This increase in energy

consumption is due to the additional energy required for local

drone training and wireless data transmission. Our proposed

algorithm FedKD-FPB outperforms all other algorithms due to

its efficient resource utilization. FedKD-F performs worse than

FedKD-FPB because it does not optimize wireless transmis-

sion power and bandwidth. Similarly, FedKD consumes more

energy than FedKD-FPB due to its lack of resource allocation

optimization. FedAvg-F, FedAvg-PB, and FedAvg have higher

energy consumption compared to FedKD-FPB because their

larger model sizes of FedAvg lead to increased computation

and wireless transmission energy consumption, and they lack

resource optimization.

Fig. 3 illustrates the energy consumption of various algo-

rithms with data sample sizes ranging from 1100 to 2700.

As the number of data samples increases, more computation

is required, resulting in higher energy consumption for all

algorithms. Our proposed algorithm, FedKD-FPB, demon-

strates the best performance due to the advantages of the
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Fig. 3. Energy consumption versus number of data samples.

Fig. 4. Energy consumption versus total bandwidth.

FedKD framework and efficient resource optimization. FedAvg

performs the worst, as it involves a larger local model and

lacks optimized resource allocation. FedKD-F and FedKD per-

form worse than FedKD-FPB due to their inefficient resource

management. FedAvg-F and FedAvg-PB have higher energy

consumption because they utilize the FedAvg framework,

which includes a larger local model.

Fig. 4 evaluates the performance of our proposed algo-

rithm with varying total bandwidths ranging from 20 to 40.

We observe that the energy consumption of all algorithms

decreases as the available bandwidth increases. This is because

a higher bandwidth allows for a greater data rate, reducing

data transmission time and, consequently, the energy required

for data transmission. Our proposed algorithm, FedKD-FPB,

consistently consumes the least energy and performs the best

among all the algorithms.

Fig. 5 illustrates the test accuracies of various algorithms

over time. It can be observed that FedKD-FPB, FedKD-F,

and FedKD consistently achieve higher accuracies compared

to FedAvg-F, FedAvg-PB, and FedAvg. This performance

improvement can be attributed to the advantages of the FedKD

framework. Additionally, our proposed FedKD-FPB shows

a slight edge over FedKD-F and FedKD in terms of both

accuracy and convergence speed, due to more comprehensive

resource optimization.

Fig. 6 depicts the accuracy performance of our proposed

algorithm FedKD-FPB compared to FedAvg over time with

different data sample sizes. As the data sample size increases,

the learning performance of both FedKD-FPB and FedAvg

Fig. 5. Test accuracy versus training time for different algorithms.

Fig. 6. Test accuracy versus training time with different data sample sizes.

Fig. 7. Test accuracy versus training time with different total bandwidth.

improves, resulting in higher accuracy. We can also observe

that FedKD-FPB outperforms FedAvg in both accuracy and

convergence speed due to its resource optimization and smaller

local model.

Fig. 7 illustrates the accuracy performance of FedKD-

FPB and FedAvg over time with varying total bandwidths.

Increasing the system bandwidth results in a higher wireless

transmission rate, which leads to shorter learning times and

improved training performance. Consequently, both FedKD-

FPB and FedAvg achieve better accuracy with larger total

bandwidth. Additionally, FedKD-FPB outperforms FedAvg

due to the advantages provided by the FedKD framework.

Fig. 8 illustrates the accuracy performance of FedKD-FPB

and FedAvg over time with both independent and identically
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Fig. 8. Test accuracy versus training time with iid and non-iid data.

Fig. 9. Test accuracy versus training time with different number of hidden
layers.

distributed (IID) and non-IID data. To simulate a non-IID

data distribution, we utilize the Dirichlet distribution [40]. The

distribution is controlled by a concentration parameter, which

we set to 0.1, dictating the level of heterogeneity in the data

distribution across all drones. Training with non-IID datasets

leads to performance degradation compared to IID datasets

due to the imbalance of local data samples. Consequently,

both FedKD-FPB and FedAvg achieve better accuracy with IID

datasets. Additionally, FedKD-FPB outperforms FedAvg due

to the advantages provided by the FedKD framework.

Fig. 9 illustrates the test accuracy performance of our

proposed algorithm with different numbers of hidden layers

in the training model. The model is evaluated with 0, 1, and

2 hidden layers. It can be observed that the configuration with

1 hidden layer achieves the best accuracy for both FedKD-

FPB and FedAvg because it strikes an optimal balance between

complexity and generalization, avoiding underfitting of simpler

models and overfitting of deeper ones. Moreover, FedKD-FPB

performs better than FedAvg with all different numbers of

hidden layers.

Fig. 10 shows the test accuracy performance of our

proposed algorithm over time with varying numbers of neurons

in the hidden layers of our training model. Specifically, the

model is evaluated with 256, 512, and 1024 neurons. It can

be observed that both FedKD-FPB and FedAvg with 512

neurons achieve the highest test accuracy and exhibit faster

convergence compared to those with 256 or 1024 neurons. This

is because 512 neurons provide an optimal balance between

model capacity and generalization, avoiding underfitting with

Fig. 10. Test accuracy versus training time with different number of neurons.

256 neurons and overfitting or increased training complexity

with 1024 neurons. In addition, FedKD-FPB consistently

achieves higher accuracy and faster convergence than FedAvg

across all neuron configurations.

VII. CONCLUSION

In this article, we have investigated the resource allocation

problem in FedKD within IoD networks. We have formulated

the joint optimization problem of CPU computing resources,

wireless transmission power, and bandwidth allocation with

the objective of minimizing overall drone energy consumption

while considering constraints on latency, computing resources,

bandwidth, and power. We have designed a low-complexity

algorithm to effectively address this optimization problem

by iteratively solving subproblems. We have validated our

approach through extensive simulations, demonstrating that

our method improves energy efficiency and model accuracy

compared to existing methods. In future work, we aim to

incorporate drone mobility to enhance system adaptability in

dynamic environments for real-world applications.
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